

(Accredited with 'A+' Grade by NAAC)

M.Sc. CHEMISTRY (SCHE21) (Two Year Programme)

SYLLABUS

From the academic year 2023 – 2024 onwards

DEPARTMENT OF CHEMISTRY (DST-FIST and UGC-SAP sponsored)

Faculty of Science DEPARTMENT OF CHEMISTRY M. Sc. Chemistry (TANSCHE syllabus) Programme Code: SCHE21

These rules and regulations shall govern the Two year post graduate studies leading to the award of degree of **Master of Science in Chemistry** in the Faculty of Science. These academic Regulations shall be called "Annamalai University, Faculty of Science Two year **M.Sc. Chemistry Regulations 2023**". They shall come into force with effect from the academic year 2023 – 2024.

1. **Definitions and Nomenclature**

- 1.1 **University** refers to Annamalai University.
- 1.2 **Department** means any of the academic departments and academic centers at the University.
- 1.3 **Discipline** refers to the specialization or branch of knowledge taught and researched in higher education. For example, Chemistry is a discipline in the Natural Sciences, while Economics is a discipline in Social Sciences.
- 1.4 **Programme** encompasses the combination of courses and/or requirements leading to a degree. For example, M.A., M.Sc.
- 1.5 **Course** is an individual subject in a programme. Each course may consist of Lectures / Laboratory / Seminar / Project work / Viva-voce etc. Each course has a course title and is identified by a course code.
- 1.6 **Curriculum** encompasses the totality of student experiences that occur during the educational process.
- 1.7 **Syllabus** is an academic document that contains the complete information about an academic programme and defines responsibilities and outcomes. This includes course information, course objectives, policies, evaluation, grading, learning resources and course calendar.
- 1.8 **Academic Year** refers to the annual period of sessions of the University that comprises two consecutive semesters.
- 1.9 **Semester** is a half-year term that lasts for a minimum duration of 90 days.
- 1.10 **Choice Based Credit System**: A mode of learning in higher education that enables a student to have the freedom to select his/her own choice of elective courses across various disciplines for completing the Degree programme.
- 1.11 **Credit** refers to the quantum of course work in terms of number of class hours in a semester required for a programme. The credit value reflects the content and duration of a particular course in the curriculum.
- 1.12 **Credit Hour** refers to the number of class hours per week required for a course in a semester. It is used to calculate the credit value of a particular course.
- 1.13 **Programme Outcomes** (POs) are statements that describe crucial and essential knowledge, skills and attitudes that students are expected to achieve and can reliably manifest at the end of a programme.
- 1.14 **Programme Specific Outcomes** (PSOs) are statements that list what the graduate of a specific programme should be able to do at the end of the programme.
- 1.15 Course Objectives are statements that define the expected goal of a course in terms of

demonstrable skills or knowledge that will be acquired by a student.

- 1.16 **Course Outcomes** (COs) are statements that describe what students should be able to achieve/demonstrate at the end of a course. They allow follow-up and measurement of learning objectives.
- 1.17 **Grade Point Average** (GPA) is the average of the grades acquired in various courses that a student has taken in a semester. The formula for computing GPA is given in section 11.3
- 1.18 **Cumulative Grade Point Average** (CGPA) is a measure of overall cumulative performance of a student over all the semesters. The CGPA is the ratio of total credit points secured by a student in various courses in all semesters and the sum of the total credits of all courses in all the semesters is given in section11.4.
- 1.19 **Letter Grade** is an index of the performance of a student in a particular course. Grades are denoted by the letters S, A, B, C, D, E, RA, and W.

2. **Programme Offered and Eligibility Criteria**:

The Department of Chemistry offers a Two-Year M. Sc. Chemistry programme. A pass in B.Sc. Chemistry, B.Sc. Applied Chemistry or B.Sc. Industrial Chemistry with not less than 50% of marks in Part–III.

- 2.1 In the case of SC/ST and Differently-abled candidates, a pass is the minimum qualification for all the above Programmes.
- 3. **Reservation Policy:** Admission to the various programmes will be strictly based on the reservation policy of the Government of Tamil Nadu.

4. **Programme Duration**

- 4.1 The Two Year Master's Programme consist of two academic years.
- 4.2 Each academic year is divided into two semesters, the first being from July to November and the second from December to April.
- 4.3 Each semester will have 90 working days (18 weeks).

5. **Programme Structure**

5.1 The Two Year Master's Programme consists of Core Courses, Elective Courses (Discipline Centric/Generic), Project, Skill Enhancement Course, Internship/industrial visit and extension activity.

5.2 **Core courses**

- 5.2.1 These are a set of compulsory courses essential for each programme.
- 5.2.2 The core courses include both Theory (Core Theory) and Practical (Core Practical) courses.
- 5.3 Elective courses
- 5.4 **Core Course** is mandatory and an essential requirement to qualify for the Degree.
- 5.5 **Elective Course: Generic/Discipline Centric** is a course that a student can choose from a range of alternatives.
- 5.6 **Skill Enhancement Course: SEC** is a course designed to provide value-based or skill-based knowledge. The main purpose of this course is to provide students with skills in the hands-on-mode to increase their employability.

5.7 Industry/Entrepreneurship

This course is to introduce students to the activity of setting up a business or businesses, taking on financial risks in the hope of profit.

5.8 Internship/Industrial Activity (Experiential Learning)

- 5.8.1 Experiential learning in the form of internship/industrial activity provides opportunities to students to connect principles of the discipline with real-life situations.
- 5.8.2 In-plant training/field trip/internship/industrial visit fall under this category.
- 5.8.3 Experiential learning is categorized as non-core course.
- 5.9 **Extension Activity** The basic objective of extension activity is to create social awareness among the students by providing the opportunities to work with people and also to create an awareness and knowledge of social realities to have concern for the welfare of the community and engage in creative and constructive societal development.
- 5.9.1 It is mandatory for every student to participate in extension activity.
- 5.9.2 All the students should enroll under NSS/NCC/CYRC/RRC or any other service organization in the University.
- 5.9.3 Students should put a minimum attendance of 40 hours in a year duly certified by the Programme Co-ordinator.
- 5.9.4 Extension activity shall be conducted outside the class hours.
- 5.9.5 Extension activity is categorized as non-core course.

5.10 Project

- 5.10.1 Each student shall undertake a Project and submit a dissertation as per guidelines in the final semester.
- 5.10.2 The Head of the Department shall assign a Research Supervisor to the student.
- 5.10.3 The Research Supervisor shall assign a topic for research and monitor the progress of the student periodically.
- 5.10.4 Students who wish to undertake project work in recognized institutions/industry shall obtain prior permission from the Department. The Research Supervisor will be from the host institute.

5.11 Value Added Course (VAC)

5.10.1 Students may opt to take Value Added Course beyond the minimum credits required for the award of the degree. VACs are outside the normal credit paradigm.

5.12 Online Courses

- 5.12.1 The Heads of Departments shall facilitate enrolment of students in Massive Open Online Courses (MOOCs) platform such as SWAYAM to provide academic flexibility and enhance the academic career of students.
- 5.12.2 Students who successfully complete a course in the MOOCs platform shall be exempted from one elective course of the programme.

5.13 **Credit Distribution:** The credit distribution is organized as follows:

Component	Component Course	
Part A	Core (Theory)	45
	Core (Practical)	12
	Project with Viva voce	7
Part B (i)	Elective (Generic/Discipline Centric)	18
Part B (ii)	Internship/Industrial Visit	02
Part B (iii)	Skill Enhancement	06
	Course/Professional Competency	
	Skill	

Part C	Extension Activity	01
	TOTAL CREDITS	91

Part A component and Part B (i) will be taken into account for CGPA calculation for the post graduate programme and the other components of Part B and Part C will not be included for CGPA calculation and have to be completed during the duration of the programme as per norms, to be eligible for obtaining the PG degree.

5.14 Credit Assignment

Each course is assigned credits and credit hours on the following basis:

- 1 Credit is defined as
- 1 Lecture period of one hour duration per week over a semester
- 1 Tutorial period of one hour duration per week over a semester
- 1 Practical/Project period of two hours duration per week over a semester.

6 Attendance

- 6.1 Each faculty handling a course shall be responsible for the maintenance of Attendance and Assessment Record for candidates who have registered for the course.
- 6.2 The Record shall contain details of the students' attendance, marks obtained in the Continuous Internal Assessment (CIA) Tests, Assignments and Seminars. In addition the Record shall also contain the organization of lesson plan of the Course teacher.
- 6.3 The record shall be submitted to the Head of the Department and Dean once a month for monitoring the attendance and syllabus coverage.
- 6.4 At the end of the semester, the record shall be placed in safe custody for any future verification.
- 6.5 The Course teacher shall intimate to the Head of the Department at least seven calendar days before the last instruction day in the semester about the attendance particulars of all students.
- 6.6 Each student shall have a minimum of 75% attendance in all the courses of the particular semester failing which he or she will not be permitted to write the End-Semester Examination. The student has to redo the semester in the next year.
- 6.7 Relaxation of attendance requirement up to 10% may be granted for valid reasons such as illness, representing the University in extracurricular activities and participation in NCC/NSS/YRC/RRC.

7 Mentor-Mentee System

- 7.1 To help the students in planning their course of study and for general advice on the academic programme, the Head of the Department will attach certain number of students to a member of the faculty who shall function as a Mentor throughout their period of study.
- 7.2 The Mentors will guide their mentees with the curriculum, monitor their progress, and provide intellectual and emotional support.
- 7.3 The Mentors shall also help their mentees to choose appropriate electives and value-added courses, apply for scholarships, undertake projects, prepare for competitive examinations such as NET/SET, GATE etc., attend campus interviews and participate in extracurricular activities.

8 Examinations

- 8.1 The examination system of the University is designed to systematically test the student's progress in class, laboratory and field work through Continuous Internal Assessment (CIA) Tests and End-Semester Examination (ESE).
- 8.2 There will be two CIA Tests and one ESE in each semester.
- 8.3 The Question Papers will be framed to test different levels of learning based on Bloom's taxonomy viz. Knowledge, Comprehension, Application, Analysis, Synthesis and Evaluation/Creativity.

8.4 **Continuous Internal Assessment Tests**

- 8.4.1 The CIA Tests shall be a combination of a variety of tools such as class tests, assignments and seminars. This requires an element of openness.
- 8.4.2 The students are to be informed in advance about the assessment procedures.
- 8.4.3 The pattern of question paper will be decided by the respective faculty.
- 8.4.4 CIA Tests will be for one- or two-hours duration depending on the quantum of syllabus.
- 8.4.5 A student cannot repeat the CIA Test-I and CIA Test-II. However, if for any valid reason, the student is unable to attend the test, the prerogative of arranging a special test lies with the teacher in consultation with the Head of the Department.
- 8.4.6 For the CIA Tests, the assessment will be done by the Course teacher

8.5 End Semester Examinations (ESE)

- 8.5.1 The ESE for the first and third semester will be conducted in November and for the second and fourth semester in May.
- 8.6 Candidates who failed in any course will be permitted to reappear in failed course in the subsequent examinations.
- 8.7 The ESE will be of three hours duration and will cover the entire syllabus of the course.

9 Evaluation

9.1 Marks Distribution

- 9.1.1 For each course, the Theory, Practical and project shall be evaluated for a maximum of 100 marks.
- 9.1.2 For the theory courses, CIA Tests will carry 25% and the ESE 75% of the marks.
- 9.1.3 For the Practical courses, the CIA Tests will carry 25% and the ESE 75% of the marks.

9.2 Assessment of CIA Tests

- 9.2.1 For the CIA Tests, the assessment will be done by the Course Instructor
- 9.2.2 For the Theory Courses, the break-up of marks shall be as follows:

	Marks
Test-I & Test-II	15
Seminar	5
Assignment	5
Total	25

9.2.3 For the Practical Courses (wherever applicable), the break-up of marks shall be as follows:

	Marks
Test-I	10
Test-II	10
Viva-voce and	05
Record	
Total	25

- 9.3 Assessment of End-Semester Examinations
- 9.3.1 Evaluation for the ESE is done by internal examiners.

9.4 Assessment of Project/Dissertation

- 9.4.1 The Project Report/Dissertation shall be submitted as per the guidelines.
- 9.4.2 The Project Work/Dissertation shall carry a maximum of 100 marks.
- 9.4.3 CIA for Project will consist of a Review of literature survey, experimentation/field work, attendance etc.
- 9.4.4 The Project Report evaluation and viva-voce will be conducted by a committee constituted by the Head of the Department.

- 9.4.5 The Project Evaluation Committee will comprise the Head of the Department, Project Supervisor, and a senior faculty.
- 9.4.6 The marks shall be distributed as follows:

Continuous Internal Assessment (25 Marks)		End Semester Examination (75 Marks)		
Review-I - 10 Review-II -15		Project / Viva voce Dissertation Evaluation		
		50	25	

9.5 Assessment of Value-added Courses

- 9.5.1 Assessment of VACs shall be internal. Two CIA Tests shall be conducted during the semester by the Department(s) offering VAC.
- 9.5.2 The grades obtained in VACs will not be included for calculating the GPA/CGPA.

9.6 **Passing Minimum**

- 9.6.1 A student is declared to have passed in each course if he/she secures not less than 50% marks in the ESE and not less than 50% marks in aggregate taking CIA and ESE marks together.
- 9.6.2 A candidate who has not secured a minimum of 50% of marks in a course (CIA + ESE) shall reappear for the course in the next semester/year.

10. Conferment of the Master's Degree

A candidate who has secured a minimum of 50% marks in all courses prescribed in the programme and earned the minimum required credits shall be considered to have passed the Master's Programme.

11. Marks and Grading

- 11.1 The performance of students in each course is evaluated in terms Grade Point (GP).
- 11.2 The sum total performance in each semester is rated by Grade Point Average (GPA) while Cumulative Grade Point Average (CGPA) indicates the Average Grade Point obtained for all the courses completed.
- 11.3 **The GPA** is calculated by the formula

$$GPA = \frac{\sum_{i=1}^{n} C_i G_i}{\sum_{i=1}^{n} C_i}$$

where, C_i is the Credit earned for the Course i in any semester;

- G_i is the Grade Point obtained by the student for the Course i and
 - **n** is the number of Courses passed in that semester.
- 11.4 **CGPA** is the Weighted Average Grade Point of all the Courses passed starting from the first semester to the current semester.

$$CGPA = \frac{\sum_{i=1}^{m} \sum_{i=1}^{n} C_i G_i}{\sum_{i=1}^{m} \sum_{i=1}^{n} C_i}$$

Where, C_i is the Credit earned for the Course *i* in any semester;

 G_i is the Grade Point obtained by the student for the Course i and

 \boldsymbol{n} is the number of Courses passed in that semester.

m is the number of semesters.

11.5 **Evaluation:**

Range of Marks	Grade Points	Letter Grade
90 and above	10	S
80-89	9	Α
70-79	8	В
60-69	7	С
55-59	6	D
50-54	5	Ε
Less than 50	0	RA
Withdrawn from the	0	W
examination		

11.5.1 Performance of the student for each course will be rated as shown in the Table.

11.5.2 A ten-point rating scale is used for evaluation of the performance of the student to provide overall grade for the Master's Programme.

CGPA	CLASSIFICATION OF FINAL
	RESULT
8.25 and above	First Class with Distinction
6.5 and above but below 8.25	First Class
5.0 and above but below 6.5	Second Class
0.0 and above but below 5.0	Re-appear

- 11.6 **Classification of Results**. The successful candidates are classified as follows:
- 11.6.1 **For First Class with Distinction:** Candidates who have passed all the courses prescribed in the Programme in the first attempt with a CGPA of 8.25and above within the programme duration. Candidates who have withdrawn from the End Semester Examinations are still eligible for First Class with Distinction (See Section 12 for details).
- 11.6.2 For First Class: Candidates who have passed all the courses with a CGPA of 6.5 and above.
- 11.6.3 **For Second Class:** Candidates who have passed all the courses with a CGPA between 5.0 and less than 6.5.
- 11.6.4 Candidates who obtain overall highest CGPA in all examinations in the first appearance itself are eligible for University Rank.
- 11.6.5 Formula for Conversion of CGPA into Percentage $CGPA \times 9.5 = Percentage$

11.7 **Course-Wise Letter Grades**

- 11.7.1 The percentage of marks obtained by a candidate in a course will be indicated in a letter grade.
- 11.7.2 A student is considered to have completed a course successfully and earned the credits if he/she secures an overall letter grade other than RA.
- 11.7.3 A course successfully completed cannot be repeated for the purpose of improving the Grade Point
- 11.7.4 A letter grade RA indicates that the candidate shall reappear for that course. The RA Grade once awarded stays in the grade sheet of the student and is not deleted even when he/she completes the course successfully later. The grade acquired later by the student will be indicated in the grade sheet of the Odd/Even semester in which the candidate has appeared for clearance of the arrears.

11.7.5 If a student secures RA grade in the Project Work/Field Work/Practical Work / Dissertation, he / she shall improve it and resubmit if it involves only rewriting / incorporating the clarifications suggested by the evaluators or he/she can re-register and carry out the same in the subsequent semesters for evaluation.

12. Provision for Withdrawal from the End Semester Examination

- 12.1 The letter grade W indicates that a candidate has withdrawn from the examination.
- 12.2 A candidate is permitted to withdraw from appearing in the ESE for one course or courses in ANY ONE of the semesters ONLY for exigencies deemed valid by the University authorities.
- 12.3 Permission for withdrawal from the examination shall be granted only once during the entire duration of the programme.
- 12.4 Application for withdrawal shall be considered only if the student has registered for the course(s), and fulfilled the requirements for attendance and CIA tests.
- 12.5 The application for withdrawal shall be made ten days prior to the commencement of the examination and duly approved by the Controller of Examinations. Notwithstanding the mandatory prerequisite of ten days notice, due consideration will be given under extraordinary circumstances.
- 12.6 Withdrawal will not be granted for arrear examinations of courses in previous semesters and for the final semester examinations.
- 12.7 Candidates who have been granted permission to withdraw from the examination shall reappear for the course(s) when the course(s) are offered next.
- 12.8 Withdrawal shall not be taken into account as an appearance for the examination when considering the eligibility of the candidate to qualify for First Class with Distinction.
- **13.** Academic misconduct: Any action that results in an unfair academic advantage/interference with the functioning of the academic community constitutes academic misconduct. This includes but is not limited to cheating, plagiarism, altering academic documents, fabrication/falsification of data, submitting the work of another student, interfering with other students' work, removing/defacing library or computer resources, stealing other students' notes/assignments, and electronically interfering with other students'/University's intellectual property. Since many of these acts may be committed unintentionally due to lack of awareness, students shall be sensitized on issues of academic integrity and ethics.
- 14. **Transitory Regulations:** Wherever there has been a change of syllabi, examinations based on the existing syllabus will be conducted for two consecutive years after implementation of the new syllabus in order to enable the students to clear the arrears. Beyond that, the students will have to take up their examinations in equivalent subjects, as per the new syllabus, on the recommendation of the Head of the Department concerned.
- **15.** Notwithstanding anything contained in the above pages as Rules and Regulations governing the Two-Year Master's Programmes at Annamalai University, the Syndicate is vested with the powers to revise them from time to time on the recommendations of the Academic Council.

2. Template for PG Programme in Chemistry

M. Sc. Chemistry (Two-Year)

Curriculum Design

Semester-I	С	Н	Semester-II	С	Н	Semester-III	С	H	Semester-IV	С	Н
1.1. Core-I Organic Reaction Mechanism I	5	5	2.1. Core-IV Organic Reaction Mechanism-II	5	5	3.1. Core-VII Organic Synthesis and Photochemistry	5	5	4.1. Core-XI Coordination Chemistry-II	5	5
1.2 Core-II Structure and Bonding in Inorganic Complexes	5	5	2.2 Core-V Physical Chemistry -I	5	5	3.2 Core-VIII Coordination Chemistry-I	5	5	4.2 Core-XII practical Analytical Instrumentation Techniques Practical-IV	5	10
1.3 Core – III practical Organic Chemistry Practical I	4	10	2.3 Core – VI practical Inorganic Chemistry Practical -II	4	10	3.3 Core – IX Physical Chemistry-II	5	5	4.3 Core Project with Viva-Voce	7	10
1.4 Elective (Generic /Discipline Centric)- I Pharmaceutical Chemistry / Nanomaterials and Nanotechnology	3	4	2.4 Elective (Generic /Discipline Centric) – III Medicinal Chemistry / Green Chemistry	3	4	3.4 Core – X practical Physical Chemistry Practical- III	4	10	4.4 Elective (Generic /Discipline Centric) – VI Chemistry of Natural Products / Polymer Chemistry	3	4
1.5 Elective (Generic / Discipline Centric)-II Electro Chemistry / Pharmocognosy and Phytochemistry	3	4	2.5 Elective (Generic / Discipline Centric)-IV Bio-inorganic Chemistry / Material Science	3	4	3.5 Elective (Generic /Discipline Centric) – V Molecular Spectroscopy / Biomolecules and Heterocyclic Compounds	3	4	4 5 Skill Enhancement Course SEC III Research Tools and Techniques / Industrial Chemistry	2	2
			2.6 Skill Enhancement Course SEC I Computational Chemistry / Chemistry of Consumer Products	2	2	3.6 Skill Enhancement Course SEC II Term Paper and Seminar Presentation	2	2	4.6 Extension Activity	1	-
						3.7 Internship/ Industrial Activity	2	-			
	20	28		22	30		26	31		23	31
		•	·	•	•	·	•		ΤΟΤΑΙ	91	120

Credit Distribution for PG Programme in Chemistry

M.Sc. Chemistry (2-Year)

First Year

Semester-I

Courses	Credit	Hours/week
Core I: Organic Reaction Mechanism I	5	5
Core II: Structure and Bonding in Inorganic Complexes	5	5
Core III: Organic Chemistry Practical I	4	10
Elective (Generic /Discipline Centric)- I	3	4
Pharmaceutical Chemistry /		
Nanomaterials and Nanotechnology		
Elective (Generic / Discipline Centric)-II	3	4
Electro Chemistry / Pharmocognosy and Phytochemistry		
Total	20	28

Semester-II

Courses	Credit	Hours/week
Core IV: Organic Reaction Mechanism - II	5	5
Core V: Physical Chemistry –I	5	5
Core VI: Inorganic Chemistry Practical – II	4	10
Elective (Generic /Discipline Centric) – III	3	4
Medicinal Chemistry / Green Chemistry		
Elective (Generic / Discipline Centric)-IV	3	4
Bio-inorganic Chemistry / Material Science		
Skill Enhancement Course SEC I	2	2
Computational Chemistry / Chemistry of Consumer Products		
Total	22	30

Second Year

Semester-III

Courses	Credit	Hours/week
Core VII: Organic Synthesis and Photochemistry	5	5
Core VIII: Coordination Chemistry - I	5	5
Core IX: Physical Chemistry-II	5	5
Core X: Physical Chemistry Practical-III	4	10
Elective (Generic /Discipline Centric) – V	3	4
Molecular Spectroscopy / Biomolecules and Heterocyclic Compounds		
Skill Enhancement Course: SEC II Term Paper and Seminar Presentation	2	2
Internship/ Industrial Activity	2	-
Total	26	31

Semester-IV

Courses	Credit	Hours/week		
Core-XI: Coordination Chemistry-II	5	5		
Core-XII: Analytical Instrumentation Techniques Practical-IV	5	10		
Core Project with Viva-Voce	7	10		
Elective (Generic /Discipline Centric) – VI	3	4		
Chemistry of Natural Products / Polymer Chemistry				
Skill Enhancement Course : SEC III	2	2		
Research Tools and Techniques / Industrial Chemistry				
Extension Activity	1	-		
Total	23	31		

3. Template for Semester

Course	Course Code Course title		HOURS / WEEK		С	MARKS		
Code			Т	Р		CIA	ESE	TOTAL
	SEMESTER - I	1		1	[
23CHEC101	Core I: Organic Reaction Mechanism I	5	5	-	5	25	75	100
23CHEC102	Core II: Structure and Bonding in Inorganic Complexes	5	5	-	5	25	75	100
23CHEP103	Core III: Organic Chemistry Practical I	10	-	10	4	25	75	100
23CHEE104/ 23CHEE105	Elective (Generic /Discipline Centric)- I Pharmaceutical Chemistry / Nanomaterials and Nanotechnology	4	4	-	3	25	75	100
23CHEE106/ 23CHEE107	Elective (Generic / Discipline Centric)-II Electro Chemistry / Pharmocognosy and Phytochemistry	4	4	-	3	25	75	100
	TOTAL	28			20			500
	SEMESTER - II	1		r	1			
23CHEC201	Core IV: Organic Reaction Mechanism - II	5	5	-	5	25	75	100
23CHEC202	Core V: Physical Chemistry –I	5	5	-	5	25	75	100
23CHEP203	Core VI: Inorganic Chemistry Practical – II	10	-	10	4	25	75	100
23CHEE204/ 23CHEE205	Elective (Generic /Discipline Centric) – III Medicinal Chemistry / Green Chemistry	4	4	-	3	25	75	100
23CHEE206/ 23CHEE207	Elective (Generic / Discipline Centric)-IV Bio-inorganic Chemistry / Material Science	4	4	-	3	25	75	100
23CHES208 / 23CHES209	Skill Enhancement Course SEC I Computational Chemistry / Chemistry of Consumer Products	2	2	-	2	25	75	100
TOTAL 30 SEMESTER - III					22			600
	SEMESTER - III	~	~		~			
23CHEC301	Core VII: Organic Synthesis and Photochemistry	2	5	-	5	25	75	100
23CHEC302	Core VIII: Coordination Chemistry - I	5	5	-	5	25	75	100
23CHEC303	Core IX: Physical Chemistry-II	5	5	-	5	25	75	100
23CHEP304	Core X: Physical Chemistry Practical-III	10	-	10	4	25	75	100
23CHEE305/ 23CHEE306	Elective (Generic /Discipline Centric) – V Molecular Spectroscopy / Biomolecules and Heterocyclic Compounds	4	4	-	3	25	75	100
23CHES307	Skill Enhancement Course: SEC II Term Paper and Seminar Presentation	2	2	-	2	25	75	100
23CHEI308	Internship / Industrial Activity	-	-	-	2	25	75	100
	TOTAL	31			26			700

	SEMESTER - IV							
23CHEC401	Core-XI: Coordination Chemistry-II	5	5	-	5	25	75	100
23CHEP402	Core-XII: Analytical Instrumentation Techniques Practical-IV	10	-	10	5	25	75	100
23CHED403	Core Project with Viva-Voce	10	10	-	7	25	75	100
23CHEE404 / 23CHEE405	Elective (Generic /Discipline Centric) – VI Chemistry of Natural Products / Polymer Chemistry	4	4	-	3	25	75	100
23CHES406 / 23CHES407	Skill Enhancement Course : SEC III Research Tools and Techniques / Industrial Chemistry	2	2	-	2	25	75	100
23CHEX408	Extension Activity	-	-	-	1	25	75	100
	TOTAL	31			23			600
	TOTAL (HOURS & CREDITS	120			91			2400

Component Wise Credit Distribution

Credits	Sem I	Sem II	Sem III	Sem IV	Total
Part A	14	14	19	17	64
Part B					
(i) Discipline– Centric / Generic Skill	6	6	3	3	18
(ii) Soft Skill		2	2	2	
(iii) Summer Internship / Industrial			2		8
Training					
Part C				1	1
Total	20	22	26	23	91

Part A component and Part B (i) will be taken into account for CGPA calculation for the postgraduate programme and the other components Part B and Part C have to be completed during the duration of the programme as per the norms, to be eligible for obtaining the PG degree.

Elective Courses

Courses are grouped (Group A to Group F) so as to include topics from Pure Chemistry (PC), Applied Chemistry (AC) and Industrial Components (IC) like pharmaceutical industries, Polymer labs, courses for flexibility of choice by the stake holders institutions.

Semester I: Elective I and Elective II

Elective I to be chosen from Group A and Elective II to be chosen from Group B

Group A: (PC/AC/IC)

- 1. Pharmaceutical Chemistry
- 2. Nanomaterials and Nanotechnology

Group B: (PC/AC/IC)

- 1. Electrochemistry
- 2. Pharmacognosy and Phytochemistry

Semester II: Elective III & Elective IV

Elective III to be chosen from Group C and Elective IV to be chosen from Group D

Group C: (PC/AC/IC)

- 1. Medicinal Chemistry
- 2. Green Chemistry

Group D: (PC/AC/IC)

- 1. Bioinorganic Chemistry
- 2. Material Science

Semester III: Elective V

Elective V to be chosen from Group E

Group E: (PC/AC/IC)

- 1. Molecular Spectroscopy
- 2. Biomolecules and Heterocyclic compounds

Semester IV: Elective VI

Elective VI to be chosen from Group F

Group F: (PC/AC/IC)

- 1. Chemistry of Natural Products
- 2. Polymer Chemistry

Skill Enhancement Courses

Skill Enhancement Courses are chosen to keep in pace with the latest developments in the academic / industrial front and provides flexibility of choice by the stakeholders /institutions.

Group G (Skill Enhancement Courses) SEC: (Practical based paper)

- Computational Chemistry
- 3D printing in Chemistry
- Preparation of Consumer products
- Chemistry in everyday life
- Cosmetic Chemistry
- Origin lab
- Industrial Chemistry
- Research Tools and Techniques

Ability Enhancement Courses

Soft Skill courses

Extra Disciplinary Courses for other Departments (not for Mathematics students) Students from other Departments may also choose any one of the following as Extra Disciplinary Course.

- ED I: Chemistry for Life Sciences
- ED II: Chemical conservation
- ED III: Chemistry in food preservation
- ED IV: Chemistry for Social studies
- ED -V: Chemistry in consumer products

4. Instructions for Course Transaction

Courses	Lecture	Tutorial	Lab Practice	Total
	hrs	hrs		hrs
Core	75	15		90
Electives	75	15		90
ED	75	15		90
Lab Practice Courses	-	15	75	90
Project	20		70	90

Testing Pattern

(25+75)

13.1 Internal Assessment

Theory Course: For theory courses there shall be three tests conducted by the faculty concerned and the average of the best two can be taken as the Continuous Internal Assessment (CIA) for a maximum of 25 marks. The duration of each test shall be one/one and a half hour.

Computer Laboratory Courses: For Computer Laboratory Oriented Courses, there shall be two tests in Theory part and two tests in Laboratory part. Choose one best from Theory part and other best from the two Laboratory part. The average of the best two can be treated as the CIA for a maximum of 25 marks. The duration of each test shall be one / one and a half hour.

There is no improvement for CIA of both theory and laboratory and also for University End Semester Examination.

	Maximum 75 Marks					
Intended Learning Skills	Passing Minimum: 50% Duration					
Intended Learning Skins	Three Hours					
	Inree Hours					
	Part-A (10x2 = 20 Marks)					
	Answer ALL questions					
	Each Question carries 2 mark					
Memory Recall/ Example/						
Counter Example Knowledge	Two questions from each UNIT					
about the Concepts /						
Understanding						
	Question 1 to Question 10					
	Part– B (5x5 = 25 Marks) Answer					
	ALL questions					
	Each questions carries 5 Marks					
Descriptions /	Either or Type					
Application	Both parts of each question from the same UNIT					
(problems)						
	Question 11(a) or 11(b)					
	То					
	Question 15(a) or 15(b)					

13.2 Written Examination: Theory Paper (Bloom's Taxonomy based) Question paper Model

	Part-C (3x 10 = 30 Marks) Answer any THREE questions Each question carries 10 Marks
Analysis / Synthesis / Evaluation	There shall be FIVE questions covering all the five units
	Ouestion 16 to Ouestion 20

	Methods of Evaluation					
	Continuous Internal Assessment Test					
Internal	Assignments	25 Marka				
Evaluation	Seminars	2.5 WIAIKS				
	Attendance and Class Participation					
External Evaluation	End Semester Examination	75 Marks				
	Total	100 Marks				
Methods of Assessment						
Recall (K1)	Simple definitions, MCQ, Recall steps, Concept definitions.					
Understand/	MCO True/False Short essays Concept explanations short summary or					
Comprehend	overview					
(K2)						
Application	Suggest idea/concept with examples, suggest formulae, solve problems,					
(K3)	Observe, Explain.					
Apolyzo (KA)	Problem-solving questions, finish a procedure in many steps,					
Allalyze (K4)	N ⁴) Differentiate between various ideas, Map knowledge.					
Evaluate (K5)	Longer essay/ Evaluation essay, Critique of	or justify with pros and cons.				
Croata (K6)	Check knowledge in specific or offbeat si	tuations, Discussion, Debating				
Create (KO)	or Presentations.					

In order to avoid pull the score down of each PO, it is suggested that the usage L-Low (1) to the minimum.

The S, M, L is based on the course outcome. The mapping is based on the revised Bloom's Taxonomy Verbs used to describe your course outcome.

- Remember and Understanding Lower level
- Apply and Analyze Medium Level
- Evaluate and Create Strong Level

Each question should carry the course outcome and cognitive level for instance.

- 1. [CO1:K2] Question xxxx
- 2. [CO3:K1] Question xxxx

14. Different Types of Courses

(i) Core Courses (Illustrative)

- 1. Organic Reaction mechanism I & II
- 2. Structure and bonding in Inorganic compounds
- 3. Organic Chemistry Practical
- 4. Physical Chemistry I & II
- 5. Inorganic Chemistry Practical
- 6. Organic synthesis and Photochemistry
- 7. Analytical Instrumentation Techniques Practical
- 8. Coordination Chemistry-I & II
- 9. Molecular Spectroscopy
- 10. Physical Chemistry Practical

(ii) Elective Courses (ED within the Department Experts) (Illustrative)

- 1. Pharmaceutical Chemistry
- 2. Nanomaterials and Nanotechnology
- 3. Medicinal Chemistry
- 4. Green Chemistry
- 5. Electrochemistry
- 6. Pharmacognosy and Phytochemistry
- 7. Bio inorganic Chemistry
- 8. Material Science
- 9. Polymer chemistry
- 10. Biomolecules and Heterocyclic compounds

(iii) Elective Courses (ED from other Department Experts)

(iv) Skill Development Courses

(v) Institution – Industry – Interaction (Industry aligned Courses)

Programmes /course work/field study/Modelling the Industry

Problem/Statistical Analysis/Commerce-Industry related problems/MoU with

Industry and the like activities.

TANSCHE REGU	LATIONS ON LEARNING OUTCOMES-BASED CURRICULUM
FRA	MEWORK FOR UNDERGRADUATE EDUCATION
Programme	M.Sc. CHEMISTRY
Programme Code	SCHE21
Duration	2 years for PG
Programme	PO1: Problem Solving Skill
Outcomes (Pos)	Apply knowledge of Management theories and Human Resource
	practices to solve business problems through research in Global
	context.
	PO2: Decision Making Skill
	Foster analytical and critical thinking abilities for data-based decision- making.
	PO3: Ethical Value
	Ability to incorporate quality, ethical and legal value-based
	perspectives to all organizational activities.
	PO4: Communication Skill
	Ability to develop communication, managerial and interpersonal skills.
	DO5. Individual and Team Leadership Skill
	Canability to lead themselves and the team to achieve organizational
	goals
	Source and a second sec
	PO6: Employability Skill
	Inculcate contemporary business practices to enhance employability
	skills in the competitive environment.
	PO7: Entrepreneurial Skill
	Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society
	Succeed in career endeavors and contribute significantly to society.
	PO 9 Multicultural competence
	Possess knowledge of the values and beliefs of multiple cultures and
	a global perspective.
	PO 10: Moral and ethical awareness/reasoning
	Ability to embrace moral/ethical values in conducting one's life.
Programme	PSO1 – Placement
Specific Outcomes	To prepare the students who will demonstrate respectful engagement
(PSOs)	with others' ideas, behaviors, belief and apply diverse frames of
	reference to decisions and actions.
	PSO 2 - Entrepreneur
	To create effective entrepreneurs by enhancing their critical thinking,
	problem solving, decision making and leadership skill that will
	tacilitate startups and high potential organizations.

PSO3 – Research and Development Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.
PSO4 – Contribution to Business World To produce employable, ethical and innovative professionals to sustain in the dynamic business world.
PSO 5 – Contribution to the Society To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

Title of the	ORGANIC	REACTION	ME	CHANISM	- I		
Course							
Paper No.	Core I	Γ	г –		1.		
Category	Core	Year	Ι	Credits	5	Course	23CHEC101
		Semester	Ι			Code	
Instructional	Lecture	Tutorial	Lal	o Practice	e Total		
hours per	4	1	-			5	
week							
Prerequisites	Basic conce	pts of organic	chen	nistry			
Objectives of	To underst	and the feasib	ollity	and the m	echar	nism of var	nous organic
the course	reactions.	1 1 1 1	. ·	• 4	1.4	• ,•	c
	10 compre	enend the tec	enniq	ues in the	e det	termination	of reaction
	To underst	ond the sense	ont	of storooph	omiot	m involvo	t in organia
	10 undersu	and the conc	ept	of stereoch	emist	ry involved	i in organic
	To correlate	and annreciat	e the	differences	invo	lved in the	various types
	of organic r	eaction mecha	nism		mvo		various types
	To design	feasible synt	thetic	s. e routes fo	or th	e preparati	on of organic
	compounds		inetic	1000005 10	<i>/</i> 1 (11	e propuruti	on of organic
Course	UNIT-I: N	omenclature.	Aron	naticity and	l Elec	ctronic effe	cts:
Outline	IUPAC Nomenclature of annulenes- condensed carbocylic and aromatic ring						
	systems- heterocyclic rings- polycyclic compounds- spiro compounds and						
	crown compounds. Non-benzenoid aromatic compounds-Huckel's rule-						
	Aromaticity of annulenes, hetero annulenes and fullerenes. Inductive and						
	field effects-mesomeric and hyperconjugative effects-Steric inhibition of						
	resonance-influence on strength of organic acids and bases-hydrogen						
	bonding and its effects						
	UNIT-II: Aromatic and Aliphatic Electrophilic Substitution:						
	Types of organic reactions-reaction intermediates-formation, structure and						
	stability of carbocations, carbanions, radicals, carbenes and nitrenes.						
	Aromatic electrophilic substitution: mechanisms of nitration, halogenation						
	and sulphonation-Friedal-crafts alkylation and acylation - Orientation and						
	icomore ovr	eactivity- Electrophilic substitution of naphthalene-formation of two					
	alectrophili	somers-explanation of kinetic and thermodynamic controls. Aliphatic					
	electrophili	c substitution v	vith r	nigration of	1, SL doub	le bond	inechanisins and
	ciccuopiini		v 1011 1	ingration of	uout	ne oonu.	
	UNIT-III· A	liphatic and	Aron	natic Nucle	ophil	ic Substitut	ion:
	Aliphatic r	ucleophilic su	ıbstit	utions $-S_N^1$	SN ²	² . and S_N^i	with examples-
	structure a	and solvent	effect	t on nucl	eophi	lic substitu	ations-Ambident
	nucleophile	s - Aliphatic n	ucleo	philic subst	itutic	ons at an all	vlic carbon- S_N ,
	S_N^2 , and S_N^2	S_N^i - Esterifica	ation	and ester	hydı	olysis. Nei	ghboring group
	participation	n –Non class	sical	carbocation	ns- 1	memory ef	fects. Aromatic
	nucleophilic	substitution:	S _N A	r, $S_N 1$ and 1	Benzy	yne mechan	isms - Effect of
	substrate str	ucture, leaving	g gro	up and attac	king	nucleophile.	
			-		-	-	

15. Syllabus for different Courses of M.Sc. Chemistry

	UNIT-IV:
	Methods of Determination of Reaction Mechanism: Reaction
	intermediates-Thermodynamic and kinetic requirements of reactions:
	Hammond postulate. Methods of determining mechanism: non-kinetic
	methods - product analysis, determination of intermediates-isolation.
	detection and trapping Cross-over experiments isotopic labelling isotope
	effects and stereo chemical evidences. Kinetic methods - relation of rate and
	mechanism Effect of structure on reactivity: Hammett and Taft equations
	Linear free energy relationship, partial rate factor, substituent and reaction
	Linear nee energy relationship, partial rate ractor, substituent and reaction
	UNII-V: Stereocnemistry-1:
	Optical isomerism-chirality –asymmetry and dissymmetry - enantiotopic
	and diastereotopic hydrogens- enantiomers and diastereomers and their
	representation by flying wedge, sawharse, Fischer and Newmann
	projections- R,S-notations.
	Walden inversion- Resolution of racemic modifications-asymmetric
	transformation - asymmetric synthesis and asymmetric induction-enantio
	and diastereo selective synthesis- Cram's and Prelog's rules -enantiomeric
	and diastereomeric excess
	Atropisomerism of biphenyls-allenes and spiranes- Geometrical isomerism
	about C=C bond- E,Z-notation-determination of configuration of
	geometrical isomers- Geometrical isomerism in acyclic oximes
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is	be solved
a part of	(To be discussed during the Tutorial hours)
internal	
component	
only. Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge Problem solving Analytical ability Professional Competency
from this	Professional Communication and Transferable skills
COURSE	Toressional Communication and Transferable skins.
Recommended	1 I. March and M. Smith. Advanced Organic Chemistry. 5 th edition
Tovt	I. J. Watch and W. Smith, Advanced Organic Chemistry, 5 Cultion, John-Wiley and Sons 2001
ТСЛ	2 E. S. Gould Mechanism and Structure in Organic Chemistry Holt
	2. E. S. Oould, Mechanism and Structure in Organic Chemistry, 110h, Binebart and Winston Inc. 1050
	3 D S Kalsi Stereochemistry of carbon compounds 8 th adition New
	A ge International Publishers, 2015
	A D V Bruice Organic Chemistry 7 th adn Prontice Hell 2012
	4. F. I. Bruice, Organic Chemisury, 7 eun, Frencice Hail, 2015.
	5. J.Clayden, N. Greeves, S. warren, Organic Compounds, 2 rd edition,
Defe	UXIOIU UNIVERSILY PIESS, 2014.
Keterence	1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-A
Books	and B, 5 th edition, Kluwer Academic / Plenum Publishers, 2007.
	2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1, 2001.
	3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK, 1987.
	4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw Hill,
	2000.

	5. I. L. Finar, Organic chemistry, Vol-1 & 2, 6 th edition, Pearson Education
	Asia, 2004.
Website and	1.https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	<u>chemistry/organic</u>
source	2. <u>https://www.organic-chemistry.org/</u>

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able

CLO1: To recall the basic principles of organic chemistry.

CLO2: To understand the formation and detection of reaction intermediates of organic reactions.

CLO3: To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.

CLO4: To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.

CLO5: To design and synthesize new organic compounds by correlating the stereochemistry of organic compounds.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	Μ
CO 2	M	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	M	S	S	S	S	М	S	S	S	S
CO 5	Μ	S	Μ	S	S	М	S	Μ	S	S
Strong -	3	1	1	1	Med	lium-2	1	1	L	.ow-1

CO-PO Mapping (Course Articulation Matrix)

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	STRUCTURE AND BONDING IN INORGANIC COMPOUNDS								
Course									
Paper No.	Core II								
Category	Core	Year	Ι	Credits	5	Course	23CHEC102		
		Semester	Ι			Code			
Instructional	Lecture	Tutorial	Lał	• Practice		Total			
hours per week	4	1	-			5			
Prerequisites	Basic cor	cepts of In	orga	nic Chem	istry				
Objectives of the	To determ	nine the str	uctur	al propert	ies of	f main group c	compounds and		
course	clusters.								
	To gain	fundamenta	ul kn	owledge of	on th	e structural as	spects of ionic		
	crystals.			-					
	To familia	arize variou	s diff	raction and	d mic	roscopic techni	aues.		
	To study	he effect of	f poin	t defects a	nd lin	e defects in ior	nic crystals.		
	To evalua	te the struct	tural a	aspects of	solids	5.	,		
Course Outline	UNIT-I:	Structure	of n	nain grou	ip co	mpounds and	l clusters: VB		
	theory –	Effect of log	ne pa	ir and elec	trone	gativity of aton	ns (Bent's rule)		
	on the ge	ometry of th	ne mo	lecules: S	tructu	re of silicates -	applications of		
	Paulings	rule of elec	trova	lence - isc	morn	hous replacem	ents in silicates		
	- or tho r	neta and ny	ro sili	cates – on	e dim	ensional two d	limensional and		
	three_dim	ensional s	ilicat	es Struct		of silicones	Structural and		
	bonding	Footuros of 1	D N	C N and I	$\mathbf{D} \mathbf{N} \alpha$	or sincones,	v acida typos		
			D-1N,	Demonstration	-IN CC	Street and Street	y actus – types,		
	examples	and struct	ures;	Borane c	luster	: Structural lea	atures of closo,		
	nido, ara	ichano and	klac	lo; carboi	ranes,	hetero and r	metalloboranes;		
	Wade's 1	rule to pre-	dict 1	the structu	are of	t borane cluste	er; main group		
	clusters –	zintl ions a	nd m	no rule.					
	UNIT-II	Solid stat	e che	mistry –	I: Ion	nic crystals: Pac	cking of ions in		
	simple, h	exagonal a	ind c	ubic close	e pac	king, voids in	crystal lattice,		
	Radius ra	tio, Crystal	syste	ems and B	sravıs	lattices, Symm	netry operations		
	In crystal	s, glide pla	nes a	Ind screw	axis;	point group an	id space group;		
	Kanusting	ki equation	Mar	delung cor	ncigy		de equation -		
	INIT-II	Solid stat	te ch	emistrv –	II. St	tructural feature	es of the crystal		
	systems:	Rock salt.	zinc	blende &	wiirt	zite, fluorite a	nd anti-fluorite		
	rutile and	anatase, ca	dmiu	m jodide a	and ni	ckel arsenide: S	Spinels -normal		
	and inver	se types ar	nd pe	rovskite s	tructu	res. Crystal G	rowth methods:		
	From me	t and solution	on (h	ydrotherm	al, so	l-gel methods)	– principles and		
	examples			•		e ,	1 1		
	UNIT-IV	: Techniq	ues i	n solid s	tate o	chemistry: X-	ray diffraction		
	technique	: Bragg's 1	law,	Powder d	iffrac	tion method -	Principle and		
	Instrumen	ntation; Inter	rpreta	ation of XF	RD da	ta – JCPDS file	s, Phase purity,		
	Scherrer	formula, lat	tice	constants	calcul	lation; Systema	atic absence of		
	reflection	s; Electron	diffr	action tech	nnique	e – principle, i	nstrumentation		
	and appli	cation. Elec	tron	microscop	y – d	ifference betwe	een optical and		
	electron	microscopy	, th	eory, prin	lciple	, instrumentat	ion, sampling		
	methods	and applicat	ions	of SEM ar	nd TE	M.			
	UNIT-V:	Band theo	ry ai	nd defects	in so	lids			
	Band the	ory – featur	es an	d its appli	catior	n of conductors	, insulators and		

	semiconductors, Intrinsic and extrinsic semiconductors; Defects in
	crystals - point defects (Schottky, Frenkel, metal excess and metal
	deficient) and their effect on the electrical and optical property, laser and
	phosphors: Linear defects and its effects due to dislocations.
Extended	Ouestions related to the above topics from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A R West, Solid state Chemistry and its applications, 2ndEdition
Text	(Students Edition), John Wiley & Sons Ltd., 2014.
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
	Himalaya Publishing House, 2001.
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th
	Edition, CRC Press, 2012.
	4. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders
	company: Philadelphia, 1977.
	5. J. E. Huneey, E. A. Keller and K. L. Keller, Inorganic Chemistry;
Defenence Deelra	410 ed.; Harper and Row: New York, 1985.
Reference Dooks	1. D. E. Douglas, D.H. McDaller and J. J. Alexander, Concepts and Models in Inorgania Chamistry, 3rd Ed. 1004
	2 R LD Tilley Understanding Solids - The Science of Materials 2 nd
	edition Wiley Publication 2013
	3. C N R Rao and I Gopalakrishnan. New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
	4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John
	Wiley: New York, 1982.
	5. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic
	Chemistry; 3rd ed.; Oxford University Press: London, 2001.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-
e-learning source	fall-2018/video_galleries/lecture-videos/

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able

CO1: Predict the geometry of main group compounds and clusters.

CO2: Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.

CO3: Understand the various types of ionic crystal systems and analyze their structural features.

CO4: Explain the crystal growth methods.

CO5: To understand the principles of diffraction techniques and microscopic techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	М	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	М	S	M	S	S	M	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	5.0	5.0	5.0	5.0	5.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	ORGAN	IC CHEMI	STR	Y PRACT	ГІСА	L - I	
Course							
Paper No.	Core III						
Category	Core	Year	Ι	Credits	4	Course	23CHEP103
		Semester	Ι			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	-	1	9			10	
Prerequisites	Basic cor	cepts of or	ganic	e chemistr	у		
Objectives of the	To under	stand the	conce	ept of se	parat	ion, qualitative	e analysis and
course	preparatio	on of organi	c con	npounds.			
	To develo	op analytica	al ski	ll in the	hand	ling of chemic	al reagents for
	separation	n of binary a	and te	rnary orga	nic n	nixtures.	
	To analy	ze the set	oarate	d organic	c co	mponents syst	ematically and
	derivative	them suita	bly.	U		1 5	5
	To constr	uct suitable	e exp	erimental	setup	o for the organ	nic preparations
	involving	two stages.			-	-	
	To exper	iment diffe	rent	purificatio	on ar	nd drying tech	iniques for the
	compoun	d processing	z .				
Course Outline	UNIT-I:	Separation	and	analysis:			
	A. Two	o componen	t mix	tures.			
	UNIT-II:	Estimation	ns:				
	a) l	Estimation of	of Phe	enol (brom	inati	on)	
	b) 1	Estimation of	of An	iline (bron	ninati	on)	
	c)]	Estimation of	of Eth	yl methyl	ketoi	ne (iodimetry)	
	d) 1	Estimation of	of Glu	icose (redo	DX)		
	UNIT-III	: Two stag	e pre	parations	:		
	a) p	Broinoanii Nitroonilin	ne iro	om annne	da		
	c) 1^{-2}	S-Tribrom	oben	n acetanini zene from	ue anilii	10	
	d A	etvl salieve	lic ac	vid from m	ethvl	salicylate	
	e) B	enzilic acid	from	henzoin	letifyi	sane ylate	
	f	<i>n</i> -Nitrobenz	oic a	cid from n	nethv	l benzoate	
		V I (III O O O O III	1010 u		loury		
Enter de d	Ouestien		le a ale		fuer		ad::4:
Extended	Questions	related to t	ne ab	ove topics	$\frac{1}{100}$	n various comp	TNDSC others
Component (is a	to be solv	ons UPSC /	IKE	\mathbf{NEI}/\mathbf{U}	GC-	CSIK / GATE /	TNPSC others
part of internal	(To be di	cussed duri	ina th	e Tutorial	hour	e)	
component only			ing th		noui	3)	
Not to be included							
in the external							
examination							
question paper)							
Skills acquired	Knowled	ge, Problem	solvi	ing, Analy	tical	ability, Professi	ional
from this course	Competer	ncy, Profess	ional	Communi	catio	n and Transfera	able skills.
Recommended	1. A R	West, Solid	state	Chemistr	y and	its applications	s, 2ndEdition
Text	(Stud	lents Editio	n), Jo	hn Wiley	& So	ns Ltd., 2014.	

	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
	Himalaya Publishing House, 2001.
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th
	Edition, CRC Press, 2012.
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
	Models in Inorganic Chemistry, 3rd Ed, 1994.
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd
	edition, Wiley Publication, 2013.
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-
e-learning source	chemistry-fall-2018/video_galleries/lecture-videos/

Course Learning Outcomes (for Mapping with POs and PSOs) Students will be able:

CO1: To recall the basic principles of organic separation, qualitative analysis and preparation. **CO2**: To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.

CO3: To determine the characteristics of separation of organic compounds by various chemical reactions.

CO4: To develop strategies to separate, analyze and prepare organic compounds.

CO5: To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 – Low

Title of the	PHARM	ACEUTIC	AL C	HEMIST	RY		
Course							
Paper No.	Elective	[1	
Category	Elective	Year	Ι	Credits	3	Course	23CHEE104
		Semester	Ι			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	3	1	-			4	
Prerequisites	Basic kno	owledge on	drug	s and dos	es		
Objectives of the	To unders	stand the ad	vance	ed concept	s of p	harmaceutica	l chemistry.
course	To recall	the principle	e and	biological	l func	tions of vario	us drugs.
	To train the	ne students f	o kno	ow the imp	ortar	nce as well the	consequences of
	various di	rugs.					
	To have k	nowledge o	n the	various a	nalysi	is and techniq	ues.
~ ~ ~	To famili	arize on the	drug	dosage an	d its	structural activ	vities.
Course Outline	UNIT-I:	Physical pi	oper	ties in Ph	arma	aceuticals: Ph	iysical properties
	of drug 1	nolecule:	physi	cal proper	rties.	Refractive in	idex- Definition,
	explanation	on, formula	ı, 1m	portance,	dete	rmination, sp	pecific & molar
	refraction	. Optical a		y rotation-	mor	ochromatic d	x polychromatic
	ngin, opi	ical activity	y, ang stical	activity		lectric const	ant & Induced
	Polarizati	on-Dielectr	ic con	nstant exp	Die Ianati	on & determine	nation Rheology
	of pharn	aceutical	syster	ns: Intro	ductio	on Definition	n. Applications
	concept	of viscosity	. Ne	wton's la	w o	f flow. Kine	ematic. Relative.
	Specific,	Reduced	& In	trinsic vi	scosi	ty. Newtonia	n system, non-
	Newtonia	n system-	Plast	ic flow, I	Pseud	loplastic flow	, Dilatent flow.
	Viscosity	measureme	ents-	selection	of v	iscometer for	Newtonian and
	non-New	onian syste	m.				
	UNIT-II:	Isotopic	Dilu	tion ana	lysis:	principle a	and applications,
	Neutron	activation	analy	vsis: Princ	ciple,	advantages	and limitations,
	Scintillati	on coun	ters:	Body	SC	canning. Ir	ntroduction to
	radiophar	maceuticals		Properties		of various	s types of
	radiophar	maceuticals	, R	adiopharn	naceu	iticals as	diagnostics, as
	therapeut	cs, for rese	arch a	and steriliz		n. Physico Che	emical Properties
	and drug	action. Ph	ysico	chemica	l pro	perties of dr	ugs (a) Partition
		it, (b) solubi	lity (c) surface	activ:	ity, (d) degree	of ionization.
	UNII-III drug dogo	: Drug do	Sage	and proc	iuct	developments	ition of Common
	terms D	ge ronns &	Diug ation	and con	ery sj trol	pharmacopoe	aias formularies
	sources of	f drug drug	nome	and con enclature	route	s of administr	ation of drugs
	products	need for a	dosag	pe form c	lassif	ication of dos	age forms Drug
	dosage ar	d product d	levelo	poment. In	trodu	iction to drug	dosage Forms &
	Drug De	liverv svste	em –	Definitio	n of	Common	terms. Drug
	Regulatio	n and contr	rol, p	harmacop	oeias	formularies.	sources of drug.
	drug nom	enclature, r	outes	of admini	strati	on of drug	gs products, need
	for a dosa	ge form, cla	assific	cation of d	osage	e forms.	
	UNIT-IV	: Develop	ment	of new	dr	ugs: Introdu	ction, procedure
	followed	in drug de	sign,	the resear	ch fo	or lead compo	ounds, molecular
	modificat	ion of lead o	comp	ounds. Str	uctur	e-Activity Rel	lationship (SAR):
	Factors e	effecting bi	oactiv	vity, resor	nance	e, inductive e	effect, isoterism,
	bioisoster	ism, spatia	l con	sideration	s, bi	ological prop	perties of simple

	functional groups, theories of drug activity, occupancy theory, rate
	theory, induced-fit theory, 4.3 Quantitative structure activity relationship
	(QSAR): Development of QSAR, drug receptor interactions, the
	additivity of group contributions, physico-chemical parameters,
	lipophilicity parameters, electronic parameter, ionization constants, steric
	parameters, chelation parameters, redox potential, indicator-variables.
	UNIT-V: Computers in Pharmaceutical Chemistry: Need of
	computers for chemistry. Computers for Analytical Chemists-
	Introduction to computers: Organization of computers, CPU, Computer
	memory, I/O devices, information storage, software components.
	Application of computers in chemistry: Programming in high level
	language (C+) to handle various numerical methods in chemistry – least
	square fit solution to simultaneous equations interpolation
	extrapolation data smoothing numerical differentiation and
	integrations
Extended	Questions related to the above topics from various competitive
Professional	examinations LIPSC / TRB / NET/ LIGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only	(10 be discussed during the Futorial hours)
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge Problem solving Analytical ability Professional
from this course	Competency, Professional Communication and Transferable skills
December ded	1 Dhysical Chamistery, Pahl and Tuli
Toxt	1. Filysical Chemistry- Dam and Tun.
Iext	2. Text book of Physical Pharmaceutics, find edition, valiable
	Plakasilali C. V.S. Sublamanyani.
	5. Medicinal Chemistry (Organic Pharmaceutical Chemistry), G.K.
	Chatwai, Filinalaya Publishing house.
	4. Instrumental method of Analysis: Hubert H, willard, /th edition.
	5. Textbook of Pharmaceutical Chemistry by, Jayshree Ghosh, S.
	Lakehmi Suken ekend & Sone
	Lakshmi, Sultan chand & Sons.
Reference Books	1. Computers in chemistry, K.V. Raman, Tata Mc.Graw-Hill, 1993.
	2. Computers for Chemists, S.K Pundir, Anshu bansal, A pragate
	prakashan., 2 nd edition, New age international (P) limited, New
	Delhi.
	3. Physical Pharmacy and Pharmaceutical Sciences by Martins, Patrick
	J. Sinko, Lippincott. William and Wilkins.
	A = Cooper and Gupp's Tutorial Pharmacy 6th edition by S I Carter
	4. Cooper and Guin's Futorial Finantiacy , oth cutton by 5.5. Carter,
	CBS Publisher Ltd.
	 CBS Publisher Ltd. Ansels pharmaceutical Dosage forms and Drug Delivery System by

Website and	https://www.ncbi.nlm.nih.gov/books/NBK482447/							
e-learning source	https://training.seer.cancer.gov/treatment/chemotherapy/types.html							
Course Learning C	Dutcomes (for Mapping with POs and PSOs)							
Students will be able	e:							
CO1: To identify th	e suitable drugs for various diseases.							
CO2: To apply the	principles of various drug action and drug design.							
CO3 : To acquire the knowledge on product development based on SAR.								
CO4 : To apply the knowledge on applications of computers in chemistry.								
CO5 : To synthesize new drugs after understanding the concepts SAR.								

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation	between	PSO's and	CO's
----------------------	---------	------------------	------

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to POS					

3	- Strong,	2 –	Medium,	1	-	Low
---	-----------	-----	---------	---	---	-----

Title of the	NANO MATERIALS AND NANO TECHNOLOGY										
Course											
Paper No.	Elective	Elective I									
Category	Elective	Year	Ι	Credits	3	Course	23CHEE105				
		Semester	Ι			Code					
Instructional	Lecture	Tutorial	Lał	Practice		Total					
hours per week	3	1	-			4					
Prerequisites	Basic kno	owledge of	cryst	allograph	y and	d material scier	nce				
Objectives of the	To unders	stand the co	ncept	of nano n	nateri	als and nano tee	chnology.				
course	To unders	stand the va	rious	types of n	ano r	naterials and the	eir properties.				
	To unders	tand the ap	plicat	ions of syr	ntheti	cally important	nano materials.				
	To correla	ate the char	acteri	stics of va	rious	nano materials	synthesized by				
	new techr	ologies.									
	To design	synthetic r	outes	for synthe	tical	ly used new nan	no materials.				
Course Outline	UNIT-I:	Introduct	ion	of nanor	mater	ials and nar	notechnologies,				
	Introducti	on-role of	size,	classifica	tion-	0D, 1D, 2D, 1	3D. Synthesis-				
	Bottom -	Up, Top–D	own,	consolida	tion	of Nano powde	ers. Features of				
	nanostruc	tures, Back	grour	nd of nano	struc	tures. Techniqu	les of synthesis				
	of nano	materials,	Tool	s of the	e na	noscience. Aj	pplications of				
	nanomate	rials and tee	chnol	ogies.							
	UNIT-II:	Bonding a	and s	tructure of	f the	nanomaterials,	Predicting the				
	Type of B	onding in a	Subs	tance crys	tal stı	ructure. Metallio	c nanoparticles,				
	Surfaces	of Materia	ls. N	anoparticl	e Siz	ze and Propert	ies. Synthesis-				
	Physical a	and chemic	al me	thods - ine	ert ga	s condensation	arc discharge.				
	laser abl	ation sol-	vel s	solvothern	nala	nd hydrotherm	al-CVD-types				
	metallo o	rganic nlas	ma e	nhanced a	and lo	w-pressure CV	D Microwave				
	accisted a	nd electrocl	nemic	al synthes	inu n	Jw-pressure C v	D. Microwave				
		Maahani		an synthes	$\frac{15.}{\text{of } n}$	actorials theory	ing relevant to				
	mechanic	al propertie	car p	chniques	to st	udy mechanica	les relevant to				
	nanomate	rials, adhes	ion ar	d friction.	ther	nal properties o	f nanomaterials				
	Nanopart	cles: gold	and	silver, me	etal o	oxides: silica, i	iron oxide and				
	alumina -	synthesis a	nd pr	operties.							
	UNIT-IV	: Electric	al p	roperties,	Co	nductivity and	d Resistivity,				
	Classifica	tion of Mat	erials	based on	Conc	luctivity, magne	etic properties,				
	electronic	propertie	s o	f materia	ıls.	Classification	of magnetic				
	phenomen	na. Semico	nduct	or materia	als –	classification-	Ge, Si, GaAs,				
	SiC, GaN	, GaP, CdS	,PbS	Identifica	ntion	of materials as	p and n –type				
	semicond	uctor-Hall	effect	- quantu	m an	d anomalous, H	Hall voltage -				
	interpreta	tion of char	ge ca	rrier densi	y. Ap	plications of se	miconductors:				
	p-n juncu	on as transis	stors		ers, p	notovoltaic and	photogarvanic				
	UNIT_V.	Nano thin	filma	nanocome	ositos	Application of	nanonarticles in				
	different fi	elds. Core-s	shell r	anonartic	es - t	vpes, synthesis	and properties				
	Nanocom	posites - r	netal-	. ceramic	- and	l polymer-matr	ix composites-				
	applicatio	ns. Charact	erizat	ion – SEN	1, TE	M, AFM and X	RD - principle.				
	instrumer	tation and a	applic	ations.	,	·	1 1 7				
			* *								

T 1 1	
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP
Text	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge
	University Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction
	to Materials Science for Engineers. 6 th ed., PEARSON Press, 2007.
Reference Books	1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP
	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge
	University Press. 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction
	to Materials Science for Engineers, 6 th ed., PEARSON Press, 2007.
	<i>e e e e e e e e e e</i>
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html.
e-learning source	2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf.
8	
Course Learning (Dutcomes (for Mapping with POs and PSOs)
Students will be able	e:
CO1 : To explain me	ethods of fabricating nanostructures.
CO2: To relate the	unique properties of nanomaterials to reduce dimensionality of the

material.

CO3: To describe tools for properties of nanostructures.

CO4: To discuss applications of nanomaterials.

CO5: To understand the health and safety related to nanomaterial.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	М	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	ELECTROCHEMISTRY							
Course								
Paper No.	Elective 1	Ι						
Category	Elective	Year	Ι	Credits	3	Course	23CHEE106	
		Semester	Ι			Code		
Instructional	Lecture	Tutorial	Lab	Practice		Total		
hours per week	3	1	-			4		
Prerequisites	Basic kno	wledge of e	lectro	ochemistry	7			
Objectives of the	To unders	tand the bel	navior	of electro	lytes	in terms of con	nductance, ionic	
course	atmospher	re, interactio	ons.					
	To famili	arize the st	ructu	re of the	electr	ical double la	yer of different	
	models.							
	To compa	re electrode	s bety	ween curre	ent de	ensity and over	potential.	
	To discus	s the mecha	nism	of electro	chemi	ical reactions.	1	
	To highlig	ght the diffe	rent	types of o	ver v	oltages and its	s applications in	
	electroana	lytical tech	nique	s.				
Course Outline	UNIT-I:	Ionics: Arr	heniu	is theory	– lin	nitations. Ionic	e activity, mean	
	ionic act	ivity and r	nean	ionic act	ivity	coefficient-co	oncept of ionic	
	strength,	Debye Huck	cel the	eory of str	ong e	lectrolytes, act	tivity coefficient	
	of strong	electrolytes	. Det	erminatio	1 of a	activity coeffic	eient ion solvent	
	and ion-io	on interacti	ons. l	Born equat	tion.	Debye-Huckel	Bjerrum model.	
	Derivatio	n of Debye-	Huck	el limiting	law	at appreciable	concentration of	
	Debue H	es modifica	itions	and app	f otre	ons. Electroly	tic conduction-	
	Debye-Hi	uckel Olisag	ger tr	d limitatio	I SUIC	Figure for io	-qualitative and	
	Ion assoc	iation and tr	inle i	on formati	ons I		fine atmosphere.	
			-elec	trolvte in	terfa	ce. Interfacia	l phenomena -	
	Evidence	s for electri	cal d	ouble lave	er no	plarizable and	non-polarizable	
	interfaces	, Electroca	pillar	y phenom	ena	- Lippmann e	equation electro	
	capillary	curves.	Elec	tro-kineti	c p	henomena e	electro-osmosis,	
	electroph	oresis, strea	ming	and sedi	ment	ation potential	ls. Structure of	
	double la	yer: Helmho	oltz -	Perrin, Gu	loy- (Chapman and S	Stern models of	
	electrical	double lay	er. Z	leta poten	tial a	and potential a	at zero charge.	
	Application	ons and limi	tatior	ns.				
	UNIT-II	: Electrodi	cs of	Elementa	ry E	lectrode Reac	ctions: Behavior	
	of electro	des: Standa	rd ele	ctrodes an	id ele	ctrodes at equi	ilibrium. Anodic	
	and Cath	odic currer	its, c	ondition	for the	he discharge o	of ions. Nernst	
	equation,	polarizable	and	non-pola	rizabl	le electrodes.	Model of three	
	electrode	system, ove	r pote	ential. Rate	ofel	ectro chemical	reactions: Rates	
	of simple	elementary	react	tions. But	er-vo	other equation	stry factor I ov	
	exchange	field approx	sity, I	ione ever	t dens	factor and trai	etry factor. Low	
	Tafel equ	ations and T	afel 1	olots Nots	neu y			
	UNIT-IV	: Electrodi	rs of	Multister	Mıı	lti Electron S	vstem: Rates of	
	multi-ste	p electrode	reacti	ons. Butle	r - Va	olmer equation	for a multi-sten	
	reaction	Rate de	eterm	ining ste	ep.	electrode no	larization and	
	depolariz	ation. Trans	sfer co	coefficients	, its s	ignificance and	d determination.	
	Stoichior	netric num	ber.	Electro-cl	nemic	al reaction r	nechanisms-rate	
	expressio	ons, order, a	and s	urface cov	verag	e. Reduction of	of I^{3-} , Fe^{2+} , and	
	dissolutio	on of Fe to I	Fe^{2+} .	Overvoltag	ge - (Chemical and e	electro chemical,	
	Phase, activation and concentration over potentials. Evolution of oxygen							
---	---							
	and hydrogen at different pH. Pourbiax and Evan's diagrams.							
	UNIT-V: Concentration Polarization. Batteries and Fuel cells:							
	Modes of Transport of electro active species - Diffusion, migration and							
	hydrodynamic modes. Role of supporting electrolytes. Polarography-							
	principle and applications. Cyclic voltammetry - anodic and cathodic							
	stripping voltammetry. Sodium and lithium-ion batteries and redox flow							
	batteries. Mechanism of charge storage: conversion and alloving.							
	Capacitors- mechanism of energy storage, charging at constant current							
	and constant voltage. Energy production systems: Fuel Cells:							
	classification, alkaline fuel cells, phosphoric acid fuel cells, high							
	temperature fuel cells.							
Extended	Questions related to the above topics, from various competitive							
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others							
Component (is a	to be solved							
part of internal	(To be discussed during the Tutorial hours)							
component only,								
Not to be included								
in the external								
examination								
question paper)								
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional							
Skills acquired from this course	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.							
Skills acquired from this course Recommended	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.1. D. R. Crow, Principles and applications of electrochemistry,							
Skills acquired from this course Recommended Text	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. 							
Skills acquired from this course Recommended Text	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd. New Delbi 2011 							
Skills acquired from this course Recommended Text	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. 3. S. Glasstone, Electro chemistry, Affiliated East West Press, Put. 							
Skills acquired from this course Recommended Text	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. 3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd. New Delhi, 2008 							
Skills acquired from this course Recommended Text	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. 3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. 4. B. Viswanathan S. Sundaram R. Venkataraman K. Rengarajan and 							
Skills acquired from this course Recommended Text	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. 3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. 4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghayan, Electrochemistry-Principles and applications S 							
Skills acquired from this course Recommended Text	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. 3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. 4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications, S. Viswanathan Printers Chennai 2007 							
Skills acquired from this course Recommended Text	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. 3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. 4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai,2007. 5. Joseph Wang, Analytical Electrochemistry 2nd edition, Wiley 2004 							
Skills acquired from this course Recommended Text Beference Books	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. 3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. 4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai,2007. 5. Joseph Wang, Analytical Electrochemistry, 2nd edition, Wiley, 2004. 1. J.O.M. Bockris and A.K.N. Reddy. Modern Electro chemistry, vol.1 							
Skills acquired from this course Recommended Text Reference Books	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai,2007. Joseph Wang, Analytical Electrochemistry, 2nd edition, Wiley, 2004. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press, New York, 2008. 							
Skills acquired from this course Recommended Text Reference Books	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. 3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. 4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai,2007. 5. Joseph Wang, Analytical Electrochemistry, 2nd edition, Wiley, 2004. 1. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press, New York, 2008. 2. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro 							
Skills acquired from this course Recommended Text Reference Books	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai,2007. Joseph Wang, Analytical Electrochemistry, 2nd edition, Wiley, 2004. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press, New York, 2008. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A, Springer, Plenum Press, New York, 2008. 							
Skills acquired from this course Recommended Text Reference Books	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai,2007. Joseph Wang, Analytical Electrochemistry, 2nd edition, Wiley, 2004. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press, New York, 2008. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A, Springer, Plenum Press, New York, 2008. Philip H. Rieger, Electrochemistry, 2nd edition, Springer, New York, 							
Skills acquired from this course Recommended Text Reference Books	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai,2007. Joseph Wang, Analytical Electrochemistry, 2nd edition, Wiley, 2004. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press, New York, 2008. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A, Springer, Plenum Press, New York, 2008. Philip H. Rieger, Electrochemistry, 2nd edition, Springer, New York, 2010. 							
Skills acquired from this course Recommended Text Reference Books	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai,2007. Joseph Wang, Analytical Electrochemistry, 2nd edition, Wiley, 2004. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press, New York, 2008. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A, Springer, Plenum Press, New York, 2008. Philip H. Rieger, Electrochemistry, 2nd edition, Springer, New York, 2010. L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977. 							
Skills acquired from this course Recommended Text Reference Books	 Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. 2. J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of chemical transformations Macmillan India Ltd., New Delhi, 2011. 3. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. 4. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai,2007. 5. Joseph Wang, Analytical Electrochemistry, 2nd edition, Wiley, 2004. 1. J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press, New York, 2008. 2. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A, Springer, Plenum Press, New York, 2008. 3. Philip H. Rieger, Electrochemistry, 2nd edition, Springer, New York, 2010. 4. L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977. 5. K.L. Kapoor, A Text book of Physical chemistry, volume-3, 							

Website and	1. https://www.pdfdrive.com/modern-electrochemistry-e34333229.								
e-learning source									
Course Learning Outcomes (for Mapping with POs and PSOs)									
Students will be able	2.								
CO1: To understand	d the behaviour of electrolytes in solution and compare the structures of								
electrical double lay	er of different models.								

CO2: To predict the kinetics of electrode reactions applying Butler-Volmer and Tafel equations

CO3: To study different thermodynamic mechanism of corrosion,

CO4: To discuss the theories of electrolytes, electrical double layer, electrodics and activity coefficient of electrolytes

CO5: To have knowledge on storage devices and electrochemical reaction mechanism.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	Μ
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 – Low

Title of the	PHARMOCOGNOSY AND PHYTOCHEMISTRY											
Course												
Paper No.	Elective II											
Category	Elective	Year	Ι	Credits	3	Course	23CHEE107					
		Semester	Ι			Code						
Instructional	Lecture	Tutorial	Lab	Practice		Total						
hours per week	3	1	-			4						
Prerequisites	Basic kno	wledge of c	hemi	stry		I						
Objectives of the	To devel	op the know	ledge	e of natura	l pro	ducts, biologica	al functions and					
course	pharmaco	ological use	s. 0		1	, 0						
	To develo	p knowledg	ge on	primary a	and se	econdary metal	polites and their					
	sources.	1				•						
	To under	stand the c	conce	pts of isc	latio	n methods and	d separation of					
	bioactive	compounds	•									
	To provid	e the know	ledge	on selecte	d gly	cosides and ma	arine drugs.					
	To famili	arize the gu	idelin	es of WHO) and	different samp	oling techniques.					
Course Outline	UNIT-I:	Pharmaco	gnosy	y and St	anda	rdization of	Herbal drugs:					
	Introduct	on, definitio	on, de	velopmen	t clas	sification and S	ource of Drugs:					
	Biologica	l, mineral,	ma	rine,and	plant	tissue cultu	res. Study of					
	pharmaco	gnostic of a	a crud	le drug. B	iosyn	thesis: Shikimi	ic acid pathway					
	and ace	tate pathv	vay.	Systemat	tic	analysis of	Crude drugs.					
	Standardi	zation of H	erbal	drugs. W	HO g	guidelines, San	npling of crude					
	drug, Me	thods of d	rug e	valuation.	Dete	ermination of	foreign matter,					
	moisture	Ash value.	. Phy	tochemica	al inv	vestigations-Ge	eneral chemical					
	tests.											
	UNIT-II:	Extraction	n Tecl	hniques: (Gener	al methods of e	extraction, types					
	– macerat	ion, Decoct	ion, p	percolation	i, Imr	nersion and so	whilet extraction.					
	Advanced	l techniques	s- coi	inter curro	ent, s	team distillation	on, supercritical					
	gases, soi	ncation, Mi	cro w	vaves assis	ted e	xtraction. Facto	ors affecting the					
	choice of	extraction p	broces	SS.	• 1	1 1 41	•1					
	UNIT-III	: Drugs col	ntain	ing Terpe	noids	s and volatile o	olls: Terpenoids:					
	Classifica Conorol	tion, Isopr	ene	rule, Isol	ation	Eucolymptol	ion tecnniques,					
	General	Oile Meth	camp	Droporotic	unoi,	Eucalyptol. V	of Volatile oils					
	Comphor	oil Core		Preparation of the citeria of the ci	JIIS, C trol	Structure un	or volatile oils,					
	triterpeno	ids amvrir	nnunn vest t	aravastero	1 a - 1 b	tructure and r	barmacological					
	annlicatio	ns annym	105, 1	laraster	л. э	indefine and p	Jilai Illacological					
		• Drugs	conta	inina all	zəlni	de Occurrenc	e function of					
	alkaloids	in plants r	harm	acentical	annli	cations Isolati	on Preliminary					
	Qualitativ	e tests and	gene	ral proper	ties.	General metho	ods of structural					
	elucidatio	n Morphir	ne. R	esernine.	nana	verine - chem	nical properties.					
	structure	and uses, pa	navei	rine - struc	ture.	chemical prop	erties and uses.					
	UNIT-V:	Plant Glyc	oside	es and Ma	rine	drugs: Glycosi	ides: Basic ring					
	system.	classificatio	on. i	solation.	pron	erties, qualita	ative analysis.					
	Pharmaco	logical act	ivitv	of Senna	i glv	cosides. Cardi	ac glycosides-					
	Digoxin.	digitoxin.	Ste	roidal s	aponi	ins glycoside	s- Diosgenin.					
	hecogenii	n. Plant pi	gmen	ts: Occur	rence	e and genera	al methods of					
	structure	determinat	ion,	isolation	and	synthesis of	quercetin and					
	cyanidin	chloride.	Mar	rine drug	gs -	Selected Dru	g Molecules:					
	Cardiovas	scular active	e subs	stances, C	ytoto	xic compounds	s, antimicrobial					

	compounds, antibiotic compounds, Anti-inflammatory agents. Marine
	toxins.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Gurdeep R Chatwal (2016), Organic chemistry of Natural
Text	products, Volume I&II, 5th edition, Himalaya publishing House.
	2. S.V.Bhat, B.A. Nagasampagi, M.Sivakumar (2014), Chemistry of
	Natural Products, Revised edition, Narosa Publishers.
Reference Books	1. Jeffrey B. Harborne (2012), Phytochemical methods: A Guide to
	Modern Techniques of Plant Analysis, 4th edition, Indian reprint,
	Springer.
	2. Ashutoshkar (2007), Pharmacognosy and Pharmacobiotechnology, 2
	nd edition, New age international (P) limited, New Delhi.
Course Leoming (Nutcomes (for Monning with DOs and DSOs)

Students will be able:

CO1: To recall the sources of natural medicines and analysis of crude drugs.

CO2: To understand the methods of evaluation based on various parameters.

CO3: To analyze the isolated drugs

CO4: To apply various techniques to discover new alternative medicines.

CO5: To evaluate the isolated drugs for various pharmacological activities

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos					

Level of Correlation between PSO's and CO's

4 - Strong, 2 - Medium, 1 - Low

Title of the	ORGANIC	REACTION N	IECH	HANISM-II			
Course Papar No	Coro IV						
Category	Core	Vear	T	Credits	5	Course	23CHEC201
Category	Core	Semester	II	Cicuits	5	Code	2501120201
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per	4	1	-	1140000		5	
week							
Prerequisites	Basic knowl	edge of organi	c che	mistry			
Objectives of	To understa	nd the concep	ot of	aromaticity	in	benzenoid,	non-benzenoid,
the course	heterocyclic	and annulene c	ompo	unds.			
	To understar	id the mechanis	sm in	volved in va	rious	s types of c	organic reactions
	With evidenc	es.	ma of	aunthaticall		nontant noo	- anta
	To understan	the reactivity be	ons or otwee	n alinhatic a	y iiiij nd ar	comatic con	ents.
	To design sy	nthetic routes for	or syn	thetically us	ed o	rganic react	ions.
Course	UNIT-I: Ad	ditions and Eli	mina	tion:			
Outline	Addition to	carbon–carbon	and c	arbon–oxyg	en m	ultiple bond	ls – electrophilic
	and nucleopl	nilic addition –	Mich	nael additior	n-add	lition to con	njugated system.
	Hydration of	olefins – Hydro	obora	tion			
	Elimination	reactions: E1,	E2,	E1cB and	E2C	2 mechanis	ms – Pyrolytic
	eliminations	– cis eliminat	ion -	orientation	of d	ouble bond	– Bredt's rule,
	Hofmann and	a Saytzeff rules					
	UNIT-II: O	xidation and R	educi	tion Reaction	ons:	Mn roogon	ta Ovidation of
	alcohols opr	of oxidation f	$\frac{1}{2}$	onolysis- cl	anu eava	will leagen	e bonds
	Reduction of	carbon-carbon	doub	ble bond and	tripl	e bond – H	omogeneous and
	heterogeneou	is catalytic h	ydrog	enation ,M	echar	nism and	stereochemistry-
	reduction of	carbonyl con	mpou	nds- compl	ex n	netal hydri	ides- MPV and
	Bouveault-B	lanc reduction	-redu	ction of cy	ycloh	exanone-st	ereselectivity in
	reductions-W	/olff-Kishner a	nd Cle	emmenson r	educt	tions.	
	UNIT-III: R	earrangement	s:				
	Nature of mi	gration, migrat	ory a	ptitude, mer	nory	effects. A	detailed study of
	the following	g rearrangement	s:				
	Carbon- car	bon migration	- Pir	nacol- Pinac	olon	e, Wagner-	- Meerwein and
	Favorskii rea	rrangements					
	Carbon-nitro	gen migration	- H	Ioffmann,	Schn	nidt, Losse	en, Curtius and
	Beckmann re	arrangementss					
	Carbon- oxy	gen migration -	Baey	er-Villiger-I	Fries	rearrangem	ents
	UNIT-IV:						
	Reagents an	d Modern Syn	thetio	c Reactions:	:		
	Lithium diis	opropylamine (LDA), Sodium b	oroh	ydride, Lit	hium aluminium
	hydride, tri-n	-butyl tin hydri	de, L	ithium dime	thyl c	cuprate, Lit	hium diisopropyl
	amide, Trim	ethyl silyl iodi	de, di		arbo	diimide, O	sU ₄ , DCC,DDQ,
	SeU ₂ , PCC, I	v-promosuccini		(INBS), Itriothylome	nonin	m halidaa	Crown others
	Fhase Transi	ci Catalysts – f	TT.	ni letny lainn	JUIIU	ini nanues -	- Crown ethers.
		PLAUNIBILIELLA.					

	gauche and anti conformations. Representations of the conformations of
	diasteromers with two asymmetric carbons using Newmann and Sawharse
	projections - relative stabilities of diastereomers and reactivity of
	diastereomers. Conformational analysis of cyclohexane, mono and
	disubstituted derivatives - reactivity of cyclohexane derivatives - conformation
	and stereochemistry of cis and trans- decalin and 9-methyl decalin
Extended	Questions related to the above topics, from various competitive examinations
Professional	UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is	(To be discussed during the Tutorial hours)
a part of	
internal	
component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional Competency,
from this	Professional Communication and Transferable skills.
course	
Recommended	1 I March and M Smith Advanced Organic Chemistry 5th ed
Text	I. J. Match and M. Shinh, <i>Navanceu Orgune Chemistry</i> , 5th ed., John-Wiley and Sons 2001
	2 E. S. Gould Mechanism and Structure in Organic Chemistry Holt
	Rinehart and Winston Inc. 1959
	3. P. S. Kalsi, <i>Stereochemistry of carbon compounds</i> , 8 th edn, New Age
	International Publishers, 2015.
	4. P. Y.Bruice, Organic Chemistry, 7 th edn., Prentice Hall, 2013.
	5. R. T. Morrison, R. N. Boyd, S. K. BhattacharjeeOrganic Chemistry,
	7 th edn., Pearson Education, 2010.
Reference	1. S. H. Pine, Organic Chemistry, 5 th edn, McGraw Hill
Books	International Editionn, 1987.
	2. L. F. Fieser and M. Fieser, Organic Chemistry, Asia Publishing
	House, Bombay, 2000.
	3. E.S. Gould, Mechanism and Structure in Organic Chemistry, Holt,
	Rinehart and Winston Inc., 1959.
	4. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Longman Press, 1989.
	5. J. A. Joule and K. Mills, <i>Heterocyclic Chemistry</i> , 4 th ed., John-Wiley,
	2010.
Website and	1. <u>https://sites.google.com/site/chemistryebookscollection02/home/organic-</u>
e-learning	chemistry/organic
source	2. <u>https://www.organic-chemistry.org/</u>
Course Learnin	g Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To recall the basic principles of aromaticity of organic and heterocyclic compounds.

CO2: To understand the mechanism of various types of organic reactions.

CO3: To predict the suitable reagents for the conversion of selective organic compounds.

CO4: To correlate the principles of substitution, elimination, and addition reactions.

CO5: To design new routes to synthesis organic compounds.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	5.0	5.0	5.0	5.0	5.0

Title of the	PHYSIC	AL CHEM	ISTR	RY- I			
Course							
Paper No.	Core V		· · · · ·			Γ	
Category	Core	Year	Ι	Credits	5	Course	23CHEC202
		Semester	II			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	4	1	-			5	
Prerequisites	Basic con	cepts of pl	ysica	l chemist	ry		
Objectives of the	To recall	the fundam	ental	s of therm	nodyn	amics and the	composition of
course	partial mo	olar quantiti	es.				
	To under	stand the cla	issica	l and statis	stical	approach of the	e functions
	To comp	are the sign	nifica	nce of M	axwe	ll-Boltzman, F	Fermi-Dirac and
	Bose-Ein	stein					
	To corre	late the th	neorie	s of read	ction	rates for the	evaluation of
	thermody	namic parai	neter	S.	C	<i>.</i> •	
	To study	the mechan	ism ai	nd kinetics	s of re	eactions.	
Course Outline		Classics 0	I qual	mun mee	mia	S. Dortiol mo	lar proportion
	Chaminal			h'a Duk	mics	• Faltial IIIO	and tomorrow
	Chemical	potential,	Gib	bs-Dun	lem	equation-binar	y and ternary
	systems.	Determinati	on of	partial m	olar c	juantities. Ther	modynamics of
	real gase	s - Fugaci	ty- d	eterminat	ion c	of fugacity by	graphical and
	equation	equation of state methods-dependence of temperature, pressure and					
	composition. Thermodynamics of ideal and non-ideal binary mixtures,						
	Duhem - Margulus equation applications of ideal and non-ideal mixtures.						
	Activity and activity coefficients-standard states - determination-vapour						
	pressure,	EMF and fr	eezin	g point me	ethod	s.	
	UNIT-II	Statistica	d th	ermodvna	amics	: Introduction	n of statistical
	thermody	namics co	ncept	ts of th	ermo	dynamic and	mathematical
	probabilit	ies-distribu	tion	of disting	guisha	able and non-	-distinguishable
	particles.	Assemblie	es, e	nsembles,	can	onical particle	es. Maxwell -
	Boltzman	n, Fermi D)irac	& Bose-E	Einste	in Statistics- c	comparison and
	applicatio	ns. Partitio	n fun	ctions-eva	luatio	on of translatio	onal, vibrational
	and rota	tional parti	ition	functions	for	monoatomic,	diatomic and
	polyatom	ic ideal gas	es. Tl	nermodyna	amic	functions in ter	rms of partition
	functions	-calculation	of e	quilibrium	n con	stants. Statistic	cal approach to
	I hermod	ynamic pro	operti	es: pressi	lre,	internal er	ergy, entropy,
	enthalpy,	GIDD S	lunc	tion, Her		iz function re	sidual entropy,
	and di at	mic gases	ortho	and para	bydr	ogen Heat can	apacity of solids
	Einstein a	and Debve r	nodel	s and para	iryur	ogen. Heat cap	Jacity of solids-
	LINIT-II	• Irreversi	hle T	s. hermodvi	nami	cs • Theories of	conservation of
	mass and	energy entr	onv n	roduction	in or	en systems by	heat, matter and
	current f	low, force	and	flux conc	cepts.	Onsager theo	ory-validity and
	verificatio	on- Onsager	recip	rocal relat	ionsh	nips. Electro kir	netic and thermo
	mechanic	al effects-	Appli	cation of	irre	eversible therr	nodynamics to
	biologica	l systems.					-
	UNIT-IV	: Kinetics	of]	Reactions	: Th	eories of reac	tions-effect of
	temperatu	ire on rea	ction	rates, co	ollisio	on theory of	reaction rates,
	Unimoleo	ular reacti	ons	-Lindema	n ar	nd Christianse	en hypothesis-

	molecular beams, collision cross sections, effectiveness of collisions, Potential energy surfaces. Transition state theory-evaluation of thermodynamic parameters of activation-applications of ARRT to reactions between atoms and molecules, time and true order-kinetic parameter evaluation. Factors determine the reaction rates in solution - primary salt effect and secondary salt effect, Homogeneous catalysis- acid- base catalysis-mechanism of acid base catalyzed reactions- Bronsted catalysis law, enzyme catalysis-Michelis-Menton catalysis. UNIT-V: Quantum Chemistry: Wave particle duality, Uncertainty principle, Particle wave and Schrodinger wave equation, wave function, properties of wave function. Properties of wave function, Normalized, Orthogonal, orthonormal, Eigen values, Eigen functions, Hermitian properties of operators. Introduction to quantum mechanics-black body radiation, photoelectric effect, hydrogen spectrum. Need for quantum mechanics, Postulates of
	Quantum Mechanics, Schrodinger wave equation, Time independent and time dependent
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended Text	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition,S.L.N.Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation,M acmillan India Ltd, Reprint - 2011. R.K. Prasad, Quantum Chemistry, New Age International Publishers, New Delhi, 2010, 4th revised edition.
Keference Books	 D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974 K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press, 1996. Gurdeep Raj, Phase rule, Goel Publishing House, 2011. N. Levine, Quantum Chemistry, Allyn& Bacon Inc, 1983, 4th

	edition.
Website and	1. https://nptel.ac.in/courses/104/103/104103112/
e-learning source	2. <u>https://bit.ly/3tL3GdN</u>
Course Learning C	Outcomes (for Mapping with POs and PSOs)
Students will be able	e:
CO1: To explain the	e classical and statistical concepts of thermodynamics.
CO2: To compare a	nd correlate the thermodynamic concepts to study the kinetics of chemical
reactions.	
CO3: To discuss the	e various thermodynamic and kinetic determination.

CO4: To evaluate the thermodynamic methods for real gases ad mixtures.

CO5: To compare the theories of reactions rates and fast reactions.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	5.0	5.0	5.0	5.0	5.0

Level of Correlation between PSO's and CO's

Title of the	INORGA	NIC CHE	MIST	FRY PRA	CTI	CAL - II	
Course							
Paper No.	Core VI						
Category	Core	Year	Ι	Credits	4	Course	23CHEP203
		Semester	II			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	-	1	9			10	
Prerequisites	Basic pri	nciples of g	gravii	netric and	l qua	litative analysi	is
Objectives of the	To under	stand and e	nhanc	e the visu	al ob	servation as an	analytical tool
course	for the qu	antitative es	stimat	tion of ion	s.		
	To recall	the principl	e and	theory in	prepa	ring standard s	olutions.
	To train the	ne students	for in	proving th	neir sl	kill in estimatin	g the amount of
	ion accura	ately prese	nt in	the solutio	n		
	To estima	ite metal io	ns, pr	resent in th	ie giv	ren solution acc	curately without
	using inst	ruments.					
	To detern	nine the amo	ount c	of ions, pre	esent	in a binary mix	ture accurately.
Course Outline	UNIT-I:	Analysis of	mix	ture of ca	tions	: Analysis of a	mixture of four
	cations co	ontaining tw	'0 CO1	mmon cati	ons a	nd two rare cat	ions. Cations to
	be tested.	XX 7 T		DI			
	Group-I	: W, I	I and	PD.		4	
	Group-II		e, M	O, Cu, Bla	ina C	0. Ti and U	
	Group-III	\cdot		, Zr, V, Cr	, ге,	Ti and U.	
	Group-IV	. ZII, I · Ca. I	NI, CO Ra and	d Sr			
	Group-V	. Ca, 1 • Li ar	od Mo	u 51.			
		Prenarati	$\frac{1}{2}$	5. f metal co	mnl	ves. Prenaratio	on of inorganic
	complexe	s.			mpn		on or morganic
	a. Prepara	tion of trist	hiour	eacopper()	[)sulp	hate	
	b. Prepara	ation of tetra	ammi	necopper(II) su	lphate	
	c. Prepara	tion of <i>cis</i> -1	Potas	sium diaqu	iobis	(oxalato)chrom	ate(III)
	d. Prepara	ation of hex	athiou	urealead(II) nitr	ate	
	UNIT-II	: Complex	omet	ric Titrati	ion:		
	1. Estima	tion of zinc,	, nick	el and mag	gnesi	um.	
	2. Estima	tion of mixt	ure o	f metal ior	ıs-pH	l control, maski	ng and
	demas	king agents	•				
	3. Determ	ination of c	alciu	m and lead	l in a	mixture (pH co	ontrol).
	4. Determ	ination of r	nanga	inese in th	e pres	sence of iron.	
	5. Determ	ination of r	ickel	in the pre	sence	e of iron.	
	UNIT-IV	: Gravime	t <mark>ric</mark> a	nd Titrim	etric	Analysis	
	1. Deter	mination of	Ba^{2+}	and Ca ²⁺ i	ons	-	
	2. Deter	mination of	Cu^{2+}	and Ni ²⁺ i	ons		
	3. Deter	mination of	Cu ²⁺	and SO ₄ ²⁻	ions		
Extended	Questions	related to t	the ab	ove topics	, froi	n various comp	etitive
Professional	examinati	ons UPSC	TRE	3 / NET/ U	GC-0	CSIR / GATE /	TNPSC others
Component (is a	to be solv	ed					
part of internal	(To be dis	scussed duri	ing th	e Tutorial	hour	s)	
component only,							
in the external							
in the external							
examination							

question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A. JeyaRajendran, Microanalytical Techniques in Chemistry:
Text	Inorganic Qualitative Analysis, United global publishers, 2021.
	2. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis; 3rded.,
	The National Publishing Company, Chennai, 1974.
	3. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS,
	London.
Reference Books	1. G. Pass, and H. Sutcliffe, Practical Inorganic Chemistry; Chapman
	Hall, 1965.
	2. W. G. Palmer, Experimental Inorganic Chemistry; Cambridge
	University Press, 1954.
Course Learning (Jutgomes (for Manning with BOs and BSOs)

Course Learning Outcomes (for Mapping with POs and PSOs) Students will be able:

CO1: To identify the anions and cations present in a mixture of salts.

CO2: To apply the principles of semi micro qualitative analysis to categorize acid radicals and basic radicals.

CO3: To acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.

CO4: To choose the appropriate chemical reagents for the detection of anions and cations.

CO5: To synthesize coordination compounds in good quality.

	CO	-PO Ma	apping ((Course	Articul	ation M	atrix)	
1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO

CO 1	n									
	8	S	S	S	М	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	5.0	5.0	5.0	5.0	5.0

Title of the	MEDICI	NAL CHE	MIST	RY			
Course Denor No	Floative	тт					
Paper No.	Elective	UI Veer	т	Cuadita	2	Course	22CHEE204
Category	Elective	Year Somestor	I II	Creans	3	Course	23CHEE204
Instructional	Lastura	Semester	II Lab	Ducation		Total	
Instructional			Lao	Practice			
Drono quigitog) Docio lun	1 wilder of	- modi	ainal ahar	nictu	4	
Prerequisites	Dasic Kil	the share	ineur	babind th	<u>mstr</u>	y volonmont of	nharmagautical
course	10 study	the chemi	isti y	bennu u	le de	velopment of	pharmaceutical
course	To gain k	nowledge o	n mea	hanism a	nd act	tion of drugs	
	To under	stand the ne	ed of	antibiotics	s and	usage of drugs.	
	To famili	arize with t	he ma	de of acti	ion of	f diabetic agent	ts and treatment
	of diabete	erize with t				underne ugenn	is und troutmont
	To identi	fy and apply	the a	ction of v	ariou	s antibiotics.	
Course Outline	UNIT-I:	Introducti	on to	o recepto	rs: I	ntroduction, ta	rgets, Agonist,
	antagonis	t, partial ag	onist.	Receptor	s, Red	ceptor types, T	heories of Drug
	– recep	otor intera	action	, Drug	syı	nergism, Dru	ig resistance,
	physicocl	nemical fact	ors in	fluencing	drug	action.	
	UNIT-II:	Antibioti	cs: I	ntroductio	on, T	argets of anti	ibiotics action,
	classifica	tion of antib	iotics	, enzyme-	based	l mechanism of	faction, SAR of
	penicllins	and tet	racycl	lins, clin	ical	application	of penicillins,
	cephalosp	orin. Curre	nt trei	nds in anti	biotic	therapy.	
	UNIT-II	(: Antihype	erten	sive agen	ts an	d diuretics: C	Classification of
	cardiovas	cular agent	s, in	troduction	to	hypertension, e	etiology, types,
	classifica	classification of antihypertensive agents, classification and mechanism of					
	action of	diuretics, Fi	irosei	mide, Hyd	rochl	orothiazide, Ar	miloride.
	UNII-IV	: Antinype	ertens	sive agent	ts an	a aluretics: C	lassification of
	classifica	tion of antih	.S, III voort	ansive age	10	lassification an	d mechanism of
	action of	diuretics Fi	irosei	nide Hyd	rochl	orothiazide Ar	niloride
		Analaasia		4:			
	UNII-V:	Analgesic	s, An	inpyretics	s and	Anti-Inflamn	natory Drugs:
	mechanis	m of action	and n	li UI II aracetamo	111a111 J. Ibu	nrofen Diclofe	and naproven
	indometh	acin nhenvi	anu p Ibutaa	and cetaino	n, Ibu nener	idine Medicine	al Chemistry of
	Antidiabe	etic Agents I	introd	uction Tx	mes o	of diabetics Dru	us used for the
	treatment	chemical o	lassi	fication. N	/Jecha	nism of action	Treatment of
	diabetic r	nellitus. Che	emisti	v of insul	in. su	lfonvl urea.	,
Extended	Ouestions	s related to t	he ab	ove topics	s, fror	n various comp	oetitive
Professional	examinat	ions UPSC	TRE	B / NET/ U	JGC-0	CSIR / GATE /	TNPSC others
Component (is a	to be solv	red					
part of internal	(To be di	scussed duri	ng th	e Tutorial	hour	s)	
component only,							
Not to be included							
in the external							
examination							
question paper)	17 1 1	D 11		A 1	,• •	1.1.4 D C	
Skills acquired	Knowledg	ge, Problem	solvi	ng, Analy	tical a	adility, Professi	ional
from this course	Competer	icy, Profess	ional	Communi	icatio	n and 1 ransfera	able skills.

Recommended	1. Wilson and Gisvold's textbook of organic medicinal and
Text	pharmaceutical chemistry,
	2. Wilson, Charles Owens: Beale, John Marlowe; Block, John H,
	Lipincott William, 12th edition, 2011.
	3. Graham L. Patrick, An Introduction to Medicinal Chemistry, 5th
	edition, Oxford University Press, 2013. Jayashree Ghosh, A text
	book of Pharmaceutical Chemistry, S. Chand and Co. Ltd, 1999,
	1999 edn.
	4. O. LeRoy, Natural and synthetic organic medicinal compounds.
	Ealemi, 1976.
	5.S. Ashutosh Kar, Medicinal Chemistry, Wiley Eastern Limited, New
	Delhi, 1993, New edn.
Reference Books	1. Foye's Princles of Medicinal Chemistry, Lipincott Williams, Seventh
	Edition, 2012
	2. Burger's Medicinal Chemistry, Drug Discovery and Development,
	Donald J. Abraham, David P. Rotella, Alfred Burger, Academic press, 2010.
	3 Wilson and Gisvold's Textbook of Organic Medicinal and
	Pharmaceutical Chemistry, John M. Beale Jr and John M. Block.
	Wolters Kluwer, 2011, 12 th edn.
	4. P. Parimoo, A Textbook of Medical Chemistry, New Delhi: CBS
	Publishers.1995.
	5. S. Ramakrishnan, K. G. Prasannan and R. Rajan, Textbook of
	Medical Biochemistry, Hyderabad: Orient Longman. 3 rd edition,
	2001.
Website and	1. https://www.ncbi.nlm.nih.gov/books/NBK482447/
e-learning source	2. <u>https://training.seer.cancer.gov/treatment/chemotherapy/types.html</u>
	3. https://www.classcentral.com/course/swayam-medicinal-chemistry-
	<u>12908</u>
Course Learning C	Outcomes (for Mapping with POs and PSOs)
Students will be able	e:
CO1: Predict a drug	s properties based on its structure.
CO2: Describe the	factors that affect its absorption, distribution, metabolism, and excretion,

and hence the considerations to be made in drug design.

CO3: Explain the relationship between drug's chemical structure and its therapeutic properties. CO4: Designed to give the knowledge of different theories of drug actions at molecular level.

CO5: To identify different targets for the development of new drugs for the treatment of infectious and GIT.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	5.0	5.0	5.0	5.0	5.0

Title of the	GREEN	CHEMIST	RY					
Course Deper No	Flootivo	TT						
Catagory	Floctive	Voor	T	Crodits	3	Course	23CHFF205	
Category	LICUIVE	Semester	I	Cicuits	5	Code	25CHEE205	
Instructional	Lecture	Tutorial	Lab	Practice		Total		
hours per week	3	1	-	/ I fuctice		4		
Prerequisites	Basic kn	wledge of	genei	al chemis	strv	•		
Objectives of the	To d	scuss t	he	principl	es	of green	chemistry.	
course	To propo	se green sol	ution	s for chem	ical e	energy storage	and conversion.	
	Propose	green solut	ions	for indust	trial	production of	Petroleum and	
	Petrocher	Petrochemicals.						
	Propose s	Propose solutions for pollution prevention in Industrial chemical and fuel						
	productio	n, Automot	ive in	dustry and	l Ship	pping industrie	S.	
	Propose g	reen solutio	ons fo	r industria	l proc	duction of Surf	actants, Organic	
	and morg	anic chemic	als.					
Course Outline	IINIT_I.	Introductio	n_ N	eed for (Freen	Chemistry	Goals of Green	
	Chemistr	Limitati	n- 19	of Green	Che	emistry Cher	nical accidents	
	terminolo	gies. Intern	ationa	all green c	hemi	strv organizati	ons and Twelve	
	principles	of Green C	hemi	stry with e	exam	ples.		
		Choice of	atorti	na motori		aganta actoly	sta and solventa	
		Choice of	starti	ing materia	ais, re 1 1:	fa Dagianing	sts and solvents	
	in detail,		nstry	in day too	ay n ∼	le. Designing	green synthesis-	
	green reag	gents: dimet	nyi ca	arbonate. C	Jreen	solvents: wat	er, Ionic liquids-	
	criteria, g	general met	hods	of prepa	ration	n, effect on o	rganic reaction.	
	Supercrit	cal carbon	dioxi	de- prope	rties,	advantages, d	rawbacks and a	
	few exam	ples of orga	nic re	eactions in	scCC	D ₂ . Green synth	nesis-adipic acid	
	and catec	nol.						
	UNIT-II	Environm	nenta	l pollutio	n, Gi	reen Catalysis	-Acid catalysts,	
	Oxidatior	catalysts,	Basic	catalysts	, Pol	ymer supporte	d catalysts-Poly	
	styrene a	luminum	chlori	ide, polyi	meric	super acid	catalysts, Poly	
		• Phase tra	nsfor	catalysis	in ar	oon synthesis	ovidation using	
	hydrogen	nerovide	cro	wn ether	m gr ∿s- e	esterification	saponification	
	anhvdride	formation	Eli	mination	react	tion Displace	ment reaction,	
	Applicati	ons in organ	ic sy	nthesis.	Teae	cion, Displace		
	UNIT-V	Micro	wave	induce	d o	reen synthes	is-Introduction	
	Instrumer	tation. Pr	incin	le and	appl	ications. Sor	ochemistry –	
	Instrumer	tation, Cav	itation	n theory -	Ultra	sound assisted	green synthesis	
	and Appl	cations.		•				
Extended	Questions	related to t	he ab	ove topics	s, fror	n various com	petitive	
Professional	examinati	ons UPSC /	TRE	8 / NET/ U	GC-0	CSIR / GATE	/TNPSC others	
Component (is a	to be solv	ed						
part of internal	(To be dis	scussed duri	ng th	e Tutorial	hour	s)		
component only,								
in the external								
examination								
Chammation								

question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green Chemistry,
Text	Anamalaya Publishers, 2005.
	2. W. L. McCabe, J.C. Smith and P. Harriott, Unit Operations of
	Chemical Engineering, 7 th edition, McGraw-Hill, NewDelhi,2005.
	3. J. M. Swan and D. St. C. Black, Organometallics in Organic
	Synthesis, Chapman Hall, 1974.
	4. V. K. Ahluwalia and R. Aggarwal, Organic Synthesis: Special
	Techniques, Narosa Publishing House, New Delhi,2001.
	5. A. K. De, Environmental Chemistry, New Age Publications,
	2017.
Reference Books	1. Anastas, P.T. and Warner, J.K. Oxford Green Chemistry - Theory and
	Practical, University Press, 1998
	2. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker,
	2001
	3. Cann, M.C. and Connely, M.E. Real-World Cases in Green
	Chemistry, American Chemical Society, Washington, 2000
	4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry,
	American Chemical Society Washington, 2002.
	5. Chandrakanta Bandyopadhyay, An Insight into Green Chemistry,
	Books and Allied (P) Ltd, 2019.
Website and	2. https://www.organic-chemistry.org/
e-learning source	3. <u>https://www.studyorgo.com/summary.php</u>
Comment and C	$(\mathbf{f}_{1}, \mathbf{M}_{2}) = (\mathbf{f}_{1}, \mathbf{M}_{2}) = (\mathbf{f}_{1}, \mathbf{M}_{2}) = (\mathbf{f}_{2}, \mathbf{M}_{2})$

Students will be able:

CO1: To recall the basic chemical techniques used in conventional industrial preparations and in green innovations.

CO2: To understand the various techniques used in chemical industries and in laboratory.

CO3: To compare the advantages of organic reactions assisted by renewable energy sources and non-renewable energy sources.

CO4: To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted organic synthesis.

CO5: To design and synthesize new organic compounds by green methods.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	М	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	М	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	BIO-INC	RGANIC	CHE	MISTRY			
Course							
Paper No.	Elective	IV	r			I .	
Category	Elective	Year	Ι	Credits	3	Course	23CHEE206
-		Semester	II			Code	
Instructional	Lecture	Tutorial	Lał) Practice		Total	
hours per week	3	1	-			4	
Prerequisites	Basic kno	owledge of	chem	istry			
Objectives of the	To unders	stand the rol	e of t	race eleme	ents.		
course	To unders	stand the bio	ologic	cal signific	ance	of iron, sulput	r.
	To study	the toxicity	of me	etals in me	dicin	les.	
	To have k	nowledge o	n dia	gnostic ag	ents.	.•	
	To discus	s on various	s met	allo enzyn	nes pi	operties.	. 1
Course Outline	UNIT-I:	Essential t	race	elements:	Sele	ective transpor	t and storage of
	metal ion	s: Ferritin, 'I	rans	terrin and	sidor	phores; Sodiui	m and potassium
	transport,	Calcium sig	gnalli	ng protein	s. Me	etallo enzymes	S: Zinc enzymes–
	carboxyp	eptidase an	nd ca	arbonic a	nhydi	rase. Iron er	nzymes–catalase,
	peroxidas	e. Copper	enzy	mes – sup	perox	ide dismutase	, Plast ocyanin,
	Cerulopla	smin, Tyros	sinase	e. Coenzyr	nes -	Vitamin-B12	coenzymes.
	UNIT-II:	Transpor	t Pr	oteins: C)xyge	en carriers -H	Hemoglobin and
	myoglobi	n - Structure	e and	oxygenati	on Bo	ohr Effect. Bin	ding of CO, NO,
	CN- to	Myoglobin	n an	d Hemog	lobin	. Biological	redox system:
	Cytochro	mes-Classifi	icatic	on, cytochr	ome	a, b and c. Cy	tochrome P-450.
	Non-hem	e oxygen ca	arrier	s-Hemeryt	hrin	and hemocyar	nin. Iron-sulphur
	proteins-	Rubredoxin	and	Ferredoxir	n- Str	ucture and clas	ssification.
	UNIT-II	: Nitrogen	fixa	ation-Intro	oduct	ion, types of	nitrogen fixing
	microorg	anisms. Niti	roger	ase enzyr	ne -	Metal clusters	s in nitrogenase-
	redox pro	perty - Dir	nitrog	gen comple	exes	transition met	tal complexes of
	dinitrogen	n - nitroger	n fixa	ation via	nitrid	e formation a	and reduction of
	dinitrogen	n to ammoni	a. Ph	otosynthes	sis: pl	hotosystem-I a	and photosystem-
	II-chlorop	ohylls struct	ure a	nd function	n.		
	UNIT-IV:	Metals in	medi	cine: Met	al To	oxicity of Hg,	Cd, Zn, Pb, As,
	Sb. The	rapeutic C	ompo	ounds: V	anadi	um-Based D	viabetes Drugs;
	Platinum-	Containing	Ant	icancer A	gents	5. Chelation t	herapy; Cancer
	treatment	. Diagnostic	Age	nts: Techn	etium	n Imaging Age	nts; Gadolinium
	MRI Imag	ging Agents	. tem	perature a	nd cr	itical magnetic	: Field.
	UNIT-V:	Enzymes	-Intr	oduction	and j	properties -no	menclature and
	classificat	tion. Enzym	e kin	etics, free	energ	gy of activation	n and the effects
	of catalys	is. Michelis	- Me	enton equa	tion	- Effect of pH,	, temperature on
	enzyme re	eactions. Fa	ctors	contributi	ng to	the efficiency	of enzyme.

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Williams, D.R. – Introdution to Bioinorganic chemistry.
Text	2. F.M. Fiabre and D.R. Williams– The Principles of Bioinorganic
	Chemistry, RoyolSoceity of Chemistry, Monograph for Teachers-31
	3. K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co.,
	USA.
	4. G.N. Mugherjea and Arabinda Das, Elements of Bioinorganic
	Chemistry - 1993.
	5. R. Gopalan, V. Ramalingam, Concise Coordination Chemistry,
	S. Chand, 2001 .
Reference Books	1. M.Satake and Y.Mido, Bioinorganic Chemistry- Discovery Publishing
	House, New Delhi (1996)
	2. M.N. Hughes, 1982, The Inorganic Chemistry of Biological processes,
	II Edition, Wiley London.
	3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.
	4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 2002.
	5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.
Website and	1. <u>https://www.pdfdrive.com/instant-notes-in-inorganic-chemistry-</u>
e-learning source	the-instant-notes-chemistry-series-d162097454.html
	2. <u>https://www.pdfdrive.com/shriver-and-atkins-inorganic-chemistry-</u>
	5th-edition-d161563417.html
Course Learning (Dutcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: The students will be able to analyses trace elements.

CO2: Students will be able to explain the biological redox systems.

CO3: Students will gain skill in analyzing the toxicity in metals.

CO4: Students will have experience in diagnosis.

CO5: Learn about the nitrogen fixation and photosynthetic mechanism.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	М	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	MATER	IAL SCIEN	ICE				
Course							
Paper No.	Elective	[V					
Category	Elective	Year	Ι	Credits	3	Course	23CHEE207
		Semester	II			Code	
Instructional	Lecture	Tutorial	Lab	• Practice		Total	
hours per week	3	1	-			4	
Prerequisites	Basic kn	owledge of	solid	-state cher	mistr	y	
Objectives of the	To unde	rstand the	crys	tal struct	ure,	growth metho	ds and X-ray
course	scattering	•	•			-	
	To explai	n the optica	l, diel	lectric and	diffu	ision properties	of crystals.
	To recog	nize the bas	sis of	semicond	luctor	rs, superconduc	tivity materials
	and magn	ets.					
	To study	the synthesi	s, cla	ssification	and	applications of	nanomaterials.
	To learn	about the i	mpor	tance of n	nateri	als used for rer	newable energy
	conversio	n.					
Course Outline	UNIT-I:	Crystallog	raph	y: symme	try -	unit cell and M	Miller indices -
	crystal sy	stems - Bra	vais la	attices - po	oint g	roups and space	e groups - X-ray
	diffraction	n-Laue eq	uation	ns-Bragg's	lav	v-reciprocal la	attice and its
	applicatio	n to geome		crystallogi	raphy	V. Crystal structu	are–powder and
	single cr	ystal applic		is. Electro	on c	harge density	maps, neutron
		Createl a	iu ap	plications.		valuation aquili	ihnium stahilitu
	ond motor	toble state	rowu Singl	a crystal	S: IN	and high toppo	iorium stability
	and metas	Gel and	solo	e ci ystai –	പര	rowth method	s nucleation
	equilibriu	m stability	and	metastable	ai g vistata	Single crystal	_I ow and high
	temperati	ire solution	orow	nterastaux 7th_Gel an	d sol	-gel Melt grown	th - Bridgeman-
	Stockhar	ver Czoc	bralsl	ci method	la F	Sux technique	nhysical and
	chemical	vapour tran	sport	Lorentz a	nd no	plarization facto	or - primary and
	secondary	v extinctions	5. 5.	20101020	ne p		
	UNIT-II	: Properti	es of	crystals:	Opt	ical studies - E	Electromagnetic
	spectrum	(qualitative	e) ref	fractive in	dex	- reflectance -	- transparency,
	transluce	ncy and opa	city. '	Types of l	umin	escence – photo	o-, electro-, and
	injection	luminescen	ce, L	EDs – org	ganic	, Inorganic and	l polymer LED
	materials	- Applicat	ions.	Dielectric	stuc	lies- Polarizatio	on - electronic,
	ionic, orio	entation, an	d spa	ce charge	polar	rization. Effect	of temperature.
	dielectric	constant,	diele	ctric loss.	Typ	bes of dielectr	ic breakdown-
	intrinsic,	thermal, dis	charg	e, electroc	chemi	ical and defect l	breakdown.
	UNIT-IV	: Special	Mate	erials: Su	perco	onductivity: M	eissner effect,
	Critical	emperature	and	critical	magi	netic Field, T	ype I and II
	supercond	luctors, BC	S the	ory-Coope	er pai	r, Applications.	Soft and hard
	magnets -	- Domain th	neory	Hysteresi	s Loc	op-Applications	. Magneto and
	gian mag	neto resista	nce.	Ferro, ferr	n and	antiferromagn	etic materials-
	applicatio	ns, magnet	ic pa	rameters 1	tor re	ecording applic	ations. Ferro-,
	Piezo-, ai	a pyro elec	tric n	naterials –	prop	erties and appli	cations. Shape
	Second U	Alloys-chai	acter	istics and	app	Logor worship	-mear optics-
	second H	Iarmonic Ge	eneral	lors, mixir	ig of	Laser waveleng	guis by quartz,
			0 -		-		
	UNIT-V:	Materials	tor F	kenewable	Ene	rgy Conversio	n: Solar Cells:
	Organic,	bilayer, bull	<u>k he</u> te	erojunction	<u>ı, pol</u>	ymer, perovski	te based. Solar

	energy conversion: lamellar solids and thin films, dye-sensitized photo
	voltaic cells, coordination compounds anchored onto semiconductor
	surfaces - Ru(II) and Os(II) polypyridyl complexes. Photochemical
	activation and splitting of water, CO_2 and N_2 . Manganese based photo
	systems for water-splitting. Complexes of Rh, Ru, Pd and Pt -
	photochemical generation of hydrogen from alcohol.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. S. Mohan and V. Arjunan, Principles of Materials Science, MJP
Text	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge University
	Press, 2012.
	5. James F. Snackenord and Madanapalli K. Murandnara, Introduction
Defenence Deeler	1 Suggested Beedings 1 M.C. Arora Solid State Chamistry Annal
Reference Dooks	Publications New Delbi 2001
	2 P.K. Duri and V.K. Babbar, Solid State Physics, S.Chand and Company
	I the 2001
	3 C Kittel Solid State Physics John-Wiley and sons NY 1966
	4 HP Meyers Introductory Solid State Physics, Viva Books Private
	Limited 1998
	5 A R West Solid State Chemistry and Applications John-Wiley and
	sons. 1987.
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html.
e-learning source	2. <u>http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf</u> .
	3. <u>https://bit.ly/3QyVg2R</u>

Students will be able:

CO1: To understand and recall the synthesis and characteristics of crystal structures, semiconductors, magnets, nanomaterials and renewable energy materials.

CO2: To integrate and assess the structure of different materials and their properties.

CO3: To analyse and identify new materials for energy applications.

CO4: To explain the importance of crystal structures, piezoelectric and pyroelectric materials, nanomaterials, hard and soft magnets, superconductors, solar cells, electrodes, LED uses, structures and synthesis.

CO5: To design and develop new materials with improved property for energy applications.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	M	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	M	S	S	S	S
CO 5	М	S	M	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	5.0	5.0	5.0	5.0	5.0

3-Strong, 2-Medium, 1-Low

Title of the	COMPLITATIONAL CHEMISTRY										
Course		UNAL CIII		5111							
Paper No.	SEC I	X 7	т		2	C	22CHEG209				
Category	SKIII Enhancoment	Year	1	Credits	Ζ	Course	23CHES208				
	Course	Semester	11			Code					
Instructional	Lecture	Tutorial	La	b Practice	9	Total					
hours per	1	1	-			2					
week											
Prerequisites	Basics of Quant	um Chemist	try								
Objectives of	To learn the applications of Quantum Chemistry in Structure, Bonding and										
the course	Thermodynamic	Properties	thro	ugh variou	is co	omputer prog	grammes.				
Course	UNIT-I										
Outline	Introduction; Computation of Geometric Parameters and vibrational										
	trequencies, Prediction of NMR Chemical shifts and correlation with										
	experimental parameters										
	UNIT-II										
	Polarisabilities and Hyper polarisabilities Structure of some simple										
	molecules from computational point of view.										
	notecules nom computational point of view.										
	UNIT-III										
	Software – List of software used in computational chemistry- Chem draw,										
	Argus lab, Gaus	ssian, Gauss	viev	w, Autodo	c ar	nd Schrödin	ger software-				
	UNIT-IV					a 1					
	Docking Protein	n-protein do	ckin	g. Glide s	core	e Combiglid	le - Receptor grid				
	generation, rea	gent prepar	atio	n, combin	ator	al screenir	ig, combinatorial				
	norary enumer	ation, inter	actr	ve enume	ratic	miana doc	cking. Desmond-				
	system bunder,	mmmzatic	, 11	ioleculai u	iyna.	lilles,					
	UNIT-V										
	Case Studies: J	aguar: A H	igh-]	Performan	ce C	Juantum Ch	emistry Software				
	Program with	Strengths	in	Life and	d N	Aaterials S	ciences Art D.				
	Bochevarov,*[a] Edward	t	Harder,[a]]	Thomas	F. Hughes,[a]				
	et all. Internatio	nal Journal	of Q	uantum Cl	hem	istry 2013,	113, 2110–2142				
References	1. A quantun	n theory, Ox	forc	l Universit	y Pı	ress, Oxford	l, 1990				
	2. Tripathy S	.et al chem.	Tec	ch 19, 620	(19	89)					
	3. Tripathy S	.et al chem.	19,	747 (1984	4)						
	4. Chan T.V	optical engi	ineer	ring 20, 22	20 (1	981)					
	5. Prasad P. V	Villiams D.	Intr	oduction to	o no	n-linear opt	ical effects in				
	molecules	and polyme	rs, J	ohn Wiley	and	l sons 1991					

Title of the Course	CHEMISTRY	OF CONS	UMI	ER PROD	UC	ГS				
Paper No.	SEC I									
Category	Skill	Year	Ι	Credits	2	Course	23CHES209			
	Enhancement	Semester	II			Code				
	Course									
Instructional	Lecture	Tutorial	La	b Practice	9	Total				
hours per week	1	1	-			2				
Prerequisites	Basics of Organ	ic Chemistr	y of	Consumer	· Pro	ducts				
Objectives of	To learn the app	plications of	Che	mistry in o	day t	o day human	life			
the course										
Course Outline	Unit I									
	Dairy Products: Composition of milk and milk products. Analysis of fat content, minerals in milk and butter. Estimation of added water in milk. Food additives, adulterants and contaminants- Food preservatives like benzoates, propionates, sorbates, disulphites									
	Beverages: Analysis of caffeine in coffee and tea, detection of chicory in coffee, chloral hydrate in toddy, estimation of methyl alcohol in alcoholic beverages									
	Artificial sweet	eners: Aspar	rtam	e, sacchar	in, d	ulcin, sucralo	se and sodium			
	Flavours: Van glutamate.Artifi colours and met	illin, alkyl cial food o allic salts. A	est color Analy	ers (fruit cants: Coa sis of pest	t fla al ta ticido	avours) and r dyes and e residues in t	monosodium non-permitted food.			
	Paints & Pigments: White pigments (white lead, ZnO, lithopone, TiO2). Blue, red, yellow and green pigments. Paints and distempers: Requirement of a good paint. Emulsion, latex; luminescent paints. Fire retardant paints and enamels, lacquers. Solvents and thinners for paints.									
References	1. Kirpal S Book.	ing, Chemis	stry	in daily lif	fe, T	hird Edition,	2012, PHI, E-			

Title of the	ORGANIC SYNTHESIS AND PHOTOCHEMISTRY											
Course												
Paper No.	Core VII											
Category	Core	Year	II	Credits	5	Course	23CHEC301					
		Semester	III			Code						
Instructional	Lecture	Tutorial	Lab	Practice		Total	-					
hours per week	4	1	-			5						
Prerequisites	Basic kno	wledge of o	organi	ic chemist	ry	•						
Objectives of the	To under	stand the n	noleci	ular comp	lexity	y of carbon sk	eletons and the					
course	presence	of functiona	ıl groi	ups and th	eir re	lative positions	5.					
	To study	To study various synthetically important reagents for any successful										
	organic synthesis.											
	To apply disconnection approach and identifying suitable synthons to											
	effect successful organic synthesis.											
	To gain the knowledge of photochemical organic reactions											
	To gain the knowledge of photochemical organic feactions.											
Course Outline	UNIT-I: Planning of an Organic Synthesis: An introduction to											
Course Outline	retrosynthesis - Synthon, Synthetic equivalent. Target molecule											
	Functiona	Functional group interconversion - Disconnection approach – One group										
	disconnection – Disconnection of alcohols, olefins and ketones - Logical											
	and illogical disconnections. Two group disconnection-1,2-, 1,3-, 1,4-,											
	1,5- and 1,6-dioxygenated skeletons and dicarbonyls. Retro Diels – Alder											
	reaction	- Pericyclic	e reac	ctions –Re	etrosy	unthetic analys	is of Camphor,					
	Longifili	ne and Rese	rpine									
	UNIT-II	Selective S	Synth	etic Meth	ods							
	Need for	protection	of fu	nctional g	roup	s during chem	ical reactions –					
	protection	n of hydro	xyl,	mercapto,	amı	no, carbonyl	and carboxylic					
	groups. Regiosele	ective synt	hesis	_ halo	oena	tion of alka	nes ambident					
	nucleoph	les. Regios	necifi	c syntheis	-rec	fuctions using	Baker's veast.					
	Stereo s	elective re	eaction	n – bro	mina	tion of dica	rboxyacetylene,					
	Shaarples	s asymmet	ric ep	oxidation	, syn	thesis of 2-bu	atanol by using					
	diisopino	campeylbor	ane.		•							
	Stereospe	cific reaction	on – ł	orominatio	on of	fumaric and ma	aleic acids.					
	UNIT-II	I: Organic	Rea	ctions - I	I							
	Form	ation of C-	C sir	gle bond:	Ald	ol condensatio	n, Claisen ester					
	reaction	, Stobbe o	conde	nsation, 1	Knoe	venagel reacti	on, Dieckmaan					
	condensa	tion – Stork	enam	ine reaction	n - l	Mannich reaction	on, Reformatsky					
	reaction											
	T		C 1	11 1	1 ***	•,,•						
	Form	ation of $C=$	= C do	uble bond	1: W	ittig reaction,	Perkin reaction,					
	Claisen –	Schmidt co	naens	sation, Pet	ersor	i s synthesis.						
	Connizor	and areas	Conn	170ro +000	tions	Banzain aan	Innection Dirah					
	reduction	Riemer-'	Callin Tieme	izalo leac	tion	– Gatterma	an reaction -					
	Chichibal	oin reaction		ini icac	.1011	Gatterilla						
	emeniou		-									

	UNIT-IV: Organic Photochemistry-I:
	Principles of photochemistry- Jablonskii diagrams- Photochemistry of
	saturated ketones- Norrish type-I and type-II reactions; photo reductions
	of ketones- Paterno-Buchi reactions- Photochemistry of α B-unsaturated
	ketones- cis-trans isomerisation and Photo cycloadditions- photoreaction
	of conjugated cyclohexadienone-photochemical oxidation- oxidative
	couplings and Barton's reactions- di- π -methane rearrangement
	UNIT-V. Pericyclic Reactions.
	Introduction-Classification of pericyclic reactions- electrocyclic
	reactions of $4n \pi$ and $(4n+2)\pi$ systems: Cycloadditions- $2\pi + 2\pi$ and 4π
	+2 π system: stereochemistry of electrocyclic reactions and
	cycloadditions: Signatropic rearrangements $-[1,3]$ and $[1,5]$ shifts
	Woodward Hoffmann selection rules-analysis of pericyclic
	reactions- correlation diagram- FMO approach-PMO approach and
	sigmatronic shift Sommlet-Hauser Cope and Claisen rearrangements
Extended	Questions related to the above topics from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only.	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. F. A. Carey and Sundberg, Advanced Organic Chemistry, 5thed,
Text	Tata McGraw-Hill, New York, 2003.
	2. J. March and M. Smith, Advanced Organic Chemistry, 5 th ed., John-
	Wiley and sons, 2007.
	3. R. E. Ireland, Organic synthesis, Prentice Hall India, Goel
	publishing house, 1990.
	4. Clayden, Greeves, Warren, Organic Chemistry, Oxford University
	Press, Second Edition, 2016.
	5. M. B. Smith, Organic Synthesis 3 rd edn, McGraw Hill International
	Edition, 2011.
Reference Books	1. Gill and Wills, Pericyclic Reactions, Chapman Hall, London, 1974.
	2. J.A. Joule, G.F. Smith, Heterocyclic Chemistry, Garden City Press,
	Great Britain, 2004.
	3. W. Caruthers, Some Modern Methods of Organic Synthesis 4 th edn,
	Cambridge University Press, Cambridge, 2007.
	4. H. O. House. Modern Synthetic reactions, W.A. Benjamin Inc,
	17/2. 5 Jagdamba Singh and Java Singh Dhotoshamistry and Deviavalia
	J. Jaguaniba Singii and Jaya Singii, Photochemistry and Pericyclic Depotions, New Age International Dublishers, New Dalbi 2012
Wahsita and	1 https://rushim.ru/books/proktikum/Monson.pdf
e-learning source	1. <u>11(195.//10511111.10/00085/018Ktiku111/191018011.put</u>

Students will be able:

CO1: To recall the basic principles of organic chemistry and to understand the various reactions of organic compounds with reaction mechanisms.

CO2: To understand the versatility of various special reagents and to correlate their reactivity with various reaction conditions.

CO3: To implement the synthetic strategies in the preparation of various organic compounds. **CO4:** To predict the suitability of reaction conditions in the preparation of tailor-made organic compounds.

CO5: To design and synthesize novel organic compounds with the methodologies learnt during the course.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	М	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	М	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	5.0	5.0	2.0	5.0	5.0

3 - Strong, 2 - Medium, 1 - Low

Title of the	COORD	INATION	CHE	MISTRY	– I							
Course	~	_										
Paper No.	Core VII	I			_	~						
Category	Core	Year	II TT	Credits	5	Course	23CHEC302					
		Semester				Code						
Instructional	Lecture	Tutorial	Lab	• Practice		Total						
hours per week	4	1	- 5									
Prerequisites	Basic kno	wledge of 1	norga	inic chemi	stry .							
Objectives of the	To gain insights into the modern theories of bonding in coordination											
course	compound To loom	compounds.										
	ro learn various methods to determine the stability constants of											
	complexes.											
	electronic	To understand and construct correlation diagrams and predict the										
	To descr	To describe various substitution and electron transfer mechanistic										
	pathways of reactions in complexes											
	To evaluate the reactions of octahedral and square planar complexes.											
Course Outline	UNIT-I:	UNIT-I: Modern theories of coordination compounds: Crystal field										
	theory - s	theory - splitting of d orbitals in octahedral, tetrahedral and square planar										
	symmetries - measurement of 10Da - factors affecting 10Da -											
	spectrochemical series - crystal field stabilisation apergy for high spin											
	and low spin complexes avidences for artistal field aplitting site											
	and now spin complexes- evidences for crystal field splitting - site											
	selections in spinels and antispinels - Jahn Teller distortions and its											
	consequences. Molecular Orbital Theory and energy level diagrams											
	concept of Weak and strong fields, Sigma and pi bonding in octahedral,											
	square pla	anar and tet	rahed	ral comple	exes.							
	UNIT-II:	Spectral of	chara	cteristics	of co	omplexes: Gro	und state terms					
	for $d^1 - d$	⁹ ions - deri	vatio	n for p^2 ar	$d d^2$	configurations.	Characteristics					
	of d-d tra	nsitions - ch	narge	transfer sp	ectra	- selection rule	es for electronic					
	spectra -	Orgel cor	relati	on diagra	m -	Sugano-Tanab	e energy level					
	diagram	of d ⁶ - sel	lected	l example	es of	f d-d spectra	$-[Ti(H_2O)_6]^{3+}$,					
	trans-[Cr	$(en)_2F_2]^+$, [N	Ni(en)	$[3]^{2+}, [CoH]$	$[F_6]^{3-}$,	$[Co(ox)_3]^{3-}$ and	d $[Cu(H_2O)_6]^{2+}$.					
	Nephelau	xetic series	s - I	Racha pai	amet	er and calcul	ation of inter-					
	electronic	repulsion r	baram	eter.								
	LINIT-II	· Stability	y and	1 Magnet	tic n	roperty of th	ne complexes.					
	Stability	of comple	xes:	Factors	affect	ting stability	of complexes.					
	Thermody	vnamic asp	ects o	of complex	x for	mation. Stepw	ise and overall					
	formation	constants.	Stabi	lity correla	tions	. statistical fact	tors and chelate					
	effect, D	eterminatio	n of	stability	const	ant and comp	position of the					
	complexe	s: Format	tion	curves	and	Bjerrum's	half method,					
	Potention	netric meth	od, l	Spectroph	otom	etric method,	Ion exchange					
	method, I	Polorograph	ic me	thod and (Conti	nuous variation	n method (Job's					
	method) l	Magnetic pr	opert	y of comp	lexes	: Spin-orbit cou	upling, effect of					
	spin-orbit	coupling	on	magnetic	mon	nents, quenchi	ing of orbital					
	magnetic	moments.										
	UNIT-IV	: Kinetics	and	mechani	sms	of substitution	n reactions of					
	octahedr	al and squa	re pl	anar com	plexe	s: Inert and Lal	bile complexes;					
	Associati	ve, Dissoc	iative	e and SI	NCB	mechanistic	pathways for					

	substitution reactions; acid and base hydrolysis of octahedral							
	complexes; Classification of metal ions based on the rate of water							
	replacement reaction and their correlation to Crystal Field Activation							
	Energy; Substitution reactions in square planar complexes: Trans effect,							
	theories of trans effect and applications of trans effect in synthesis of							
	square planar compounds; Kurnakov test.							
	UNIT-V: Electron Transfer reactions in octahedral complexes: Outer							
	sphere electron transfer reactions and Marcus-Hush theory: inner sphere							
	electron transfer reactions: nature of the bridging ligand in inner sphere							
	electron transfer reactions, fluture of the ortaging inguita in finite sphere							
	isomerisation reactions in complexes and their applications							
Extanded	Questions related to the above topics, from various compatitive							
Drafaggional	Questions related to the above topics, from various competitive							
Professional	examinations UPSC / TKB / NET/ UGC-CSIK / GATE / TNPSC others							
Component (is a	to be solved							
part of internal	(To be discussed during the Tutorial hours)							
component only,								
Not to be included								
in the external								
examination								
question paper)								
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional							
from this course	Competency, Professional Communication and Transferable skills.							
Recommended	1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic							
Text	Chemistry – Principles of structure and reactivity, 4th Edition,							
	Pearson Education Inc., 2006							
	2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson							
	Education Inc., 2008							
	3. D. Banneriea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.							
	4 B N Figgis Introduction to Ligand Fields Wiley Eastern Ltd 1976							
	5 F A Cotton G Wilkinson : C A Murillo: M Bochmann Advanced							
	Inorganic Chemistry 6th ed · Wiley Inter-science: New York 1988							
Reference Books	morganie chemistry, our ed., whey meet science. New York, 1960.							
Reference Doors	1. Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders							
	Publications, USA, 1977.							
	2. Peter Atkins and Tina Overton, Shriver and Atkins' Inorganic							
	Chemistry, 5th Edition, Oxford University Press, 2010.							
	3. Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson, P. L. Guas,							
	John Wiley, 2002, 3rd edn.							
	4. Concepts and Models of Inorganic Chemistry, B. Douglas, D.							
	McDaniel, J. Alexander, John Wiley, 1994, 3rd edn.							
	5. Inorganic Chemistry, D. F. Shriver, P. W. Atkins, W. H. Freeman							
	and Co, London, 2010.							
Website and	https://ocw.mit.edu/courses/5-04-principles-of-inorganic-chemistry-ii-							
e-learning source	fall-2008/pages/syllabus/							
Course Learning C	Dutcomes (for Mapping with POs and PSOs)							
Students will be able	e:							
CO1: Understand a	CO1: Understand and comprehend various theories of coordination compounds.							
CO2: Understand th	he spectroscopic and magnetic properties of coordination complexes.							

CO3: Explain the stability of complexes and various experimental methods to determine the stability of complexes.

CO4: Predict the electronic transitions in a complex based on correlation diagrams and UV-

visible spectral details. **CO5:** Comprehend the kinetics and mechanism of substitution reactions in octahedral and square planar complexes.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	PHYSIC	AL CHEM	ISTR	XY-I			
Course							
Paper No.	Core IX						
Category	Core	Year	II	Credits	5	Course	23CHEC303
		Semester	III			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	4	1	-			5	
Prerequisites	Basic kno	wledge of p	ohysic	al chemis	try		
Objectives of the	To study	the kinetics	of co	mplex rea	ctior	ns.	
course	To under	stand the es	ssenti	al characte	eristi	cs of wave fur	nctions and need
	for the qu	antum mec	hanic	s.			
	To know	the importa	nce o	f quantum	n mec	chanical model	s of particle in a
	box, rigid	rotor and h	armo	$n_1 c oscilla$	tor.		1 1 1 / •
	To apply	the quant	tum	mechanics	to to	hydrogen and	a polyelectronic
	systems.	omina tha are		min molo		and pradict th	a point around
	To madi	arize the syl	tional	ry in mole	cule	direction using	the concents of
	group the	ory	tional	modes, i	Iybii	uization using	the concepts of
Course Outline		Vinetics of	com	nlev and f	fact i	reactions. Kin	etics of complex
Course Outline	reactions	reversible	reacti	ons conse	cuti	ve reactions n	arallel reactions
	chain rea	ctions. Chai	n read	ctions-cha	in lei	ngth, kinetics of	of $H_2 - Cl_2 \& H_2$
	- Br ₂ read	ctions (Ther	mal a	and Photo	chem	ical reactions)	- Rice Herzfeld
	mechanis	m. Study of	fast r	eactions-r	elaxa	ation methods-	temperature and
	pressure	jump metho	ods -	stopped f	flow	flash photolys	sis methods and
	pulse rad	diolysis. K	inetic	s of poly	ymer	ization-free ra	adical, cationic,
	anionic polymerization - Polycondensation.						
	UNIT-II	: Quantum	mode	els: Particl	e in	a box-1D, two	dimensional and
	three-dim	ensional,	deger	neracy, a	pplic	ation to lin	ear conjugated
	molecula	r system, fi	ree pa	articles, r	ing s	systems. Harm	onic Oscillator-
	wave eq	uation and	solut	ion, anha	rmoi	nicity, force c	constant and its
	significance. Rigid Rotor-wave equation and solution, calculation of						
	rotational	constants a	nd bo	nd length	of di	latomic molecu	iles.
	TINITT IT	[. Annling		to II-da		and Dalar	lastnan stama
	UNII-III.	C: Application	uons	to Hydr	oger	I and Poly e	electron atoms:
	solutions	radial ar	iyuio; idaai	gen nke io ngular fu	netic	ns represent	ave equation and ation of radial
	distributi	n functions	Δnr	roximatio	n me	ons, represent	on methods: trial
	wave fun	ction variat	tion i	ntegral an	d anı	plication to pa	rticle in 1D box.
	Perturbat	ion method	- firs	t order ap	nlica	tions. Hatrefor	k self-consistent
	field me	thod. Hohe	nberg	Kohn th	eore	m and Kohn-	Sham equation.
	Helium	atom-electro	on st	pin. pauli	s ex	clusion princ	iple and Slater
	determina	ation.	~r	, F		F	-F
	UNIT-IV	': Group t	heory	: Groups	, sub	groups, sym	metry elements,
	operations, classification-axial and non-axial. Dihedral point groups- C_n , C_{nh} , D_n , D_{nh} , D_{nd} , Td and Oh. Matrix representation and classes of symmetry operations, reducible irreducible and direct product						
	representation. The Great orthogonality theorem - irreducible						
	represent	ation and re	ductio	on formula	, cor	nstruction of ch	aracter table for
	C_{2v}, C_{3v} a	nd D _{2h} poin	t grou	ips.			

	UNIT-V: Applications of quantum and group theory: Hydrogen Molecule-Molecular orbital theory and Heitler London (VB) treatment, Energy level diagram, Hydrogen molecule ion; Use of linear variation function and LCAO methods. Electronic conjugated system:Huckel method to Ethylene, Butadiene, cyclopropenyl, cyclo butadiene and Benzene. Applications of group theory to molecular vibrations, electronic spectra of ethylene.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination quartien paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
question paper)	Knowledge Problem solving Analytical ability Professional
from this course	Competency, Professional Communication and Transferable skills
Recommended Text	 R.K. Prasad, Quantum Chemistry, New Age International Publishers, New Delhi, 2010, 4th revised edition. F. A. Cotton, Chemical Applications of Group Theory, John Wiley & Sons, 2003, 2nd edition. A. Vincent, Molecular Symmetry and Group Theory. A Programmed Introduction to Chemical Applications, John and Willy & Sons Ltd., 2013, 2nd Edition. T. Engel & Philip Reid, Quantum Chemistry and Spectroscopy, Pearson, New Delhi, 2018, 4th edition. G. K. Vemulapalli, Physical Chemistry, Prentice Hall of India Pvt. Ltd. 2001. 6. D.A. McQuarrie, Quantum Chemistry, Viva Books PW. Ltd, 2013, 2nd edition. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013.
Reference Books	1. N. Levine, Quantum Chemistry, Allyn& Bacon Inc, 1983, 4th edition
	 D.A. McQuarrie and J. D. Simon, Physical Chemistry, A Molecular Approach, Viva Books Pvt. Ltd, New Delhi, 2012. R. P. Rastogi & V. K. Srivastava, An Introduction to Quantum Mechanics of Chemical Systems, Oxford & IBH Publishing Co., New Delhi, 1999. R.L. Flurry. Jr, Symmetry Group Theory and Chemical applications, Prentice Hall. Inc, 1980 J. M. Hollas, Symmetry in Molecules, Chapman and Hall, London, 2011, Reprint.

Website and	1. https://nptel.ac.in/courses/104101124					
e-learning source	2. https://ipc.iisc.ac.in/~kls/teaching.html					
Course Learning C	Outcomes (for Mapping with POs and PSOs)					
Students will be able	2:					
CO1: To discuss the	CO1: To discuss the characteristics of wave functions and symmetry functions.					
CO2: To classify the symmetry operation and wave equations.						
CO3: To apply the concept of quantum mechanics and group theory to predict the electronic						
structure.						
CO4: To specify the appropriate irreducible representations for theoretical applications.						
CO5: To develop skills in evaluating the energies of molecular spectra.						

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

Level of Correlation	n between	PSO's and	CO's
----------------------	-----------	------------------	------

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to POs	5.0	5.0	5.0	5.0	5.0

3 – Stror	ng, 2 –	Medium,	1 -	Low			
-----------	---------	---------	-----	-----			
Title of the	PHYSIC	AL CHEM	ISTR	RY PRAC	TICA	AL-III	
-----------------------	-----------------------	------------------------	------------	--------------	--------	------------------	-------------------
Course	a v						
Paper No.	Core X	X 7	TT	C l'	4	C	22CHED204
Category	Core	Year		Credits	4	Course	23CHEP304
Instructional	Locture	Semester	III Lob	Draatiaa		Total	
hours per week	Lecture			Fractice		10tai	
Prerequisites	- Basic kno	uwledge of r) hvsid	al chemis	try	10	
Objectives of the	To unde	rstand the	nrin	ciple of	condi	ictivity experi	ments through
course	conducto	metric titrat	ions.	cipic of	cond	activity experi	monts through
	To evalu	ate the ord	ler of	f the reac	tion,	temperature c	oefficient, and
	activation	energy of t	he rea	action by f	ollow	ing pseudo firs	t order kinetics.
					_		
	To const	ruct the ph	ase c	liagram o	f two	o component s	ystem forming
	congruen	t melting	sona	and fin	a its	s eutectic ten	iperatures and
	To detern	ons.	etics o	of adsorpti	ion of	foxalic acid on	charcoal
	To develo	op the poten	tial er	nergy diag	ram o	of hydrogen ion	, charge density
	distributio	on and M	[axwe	ell's spee	d di	stribution by	computational
	calculatio	n.		-		-	-
Course Outline	UNIT-I:	Conductivi	ty Ex	xperiment	S		
	1. Deter	mination of	equi	valent con	ducta	ance of a strong	electrolyte &
	the v	erification of	of DH	lO equatio	n.		
	2. Verit	ication of O	stwa	ld's Diluti	on La	w & Determina	ation of pKa of
	a we	ak acia.	Cohlr	nucch's La	w fo	r waak alactroly	tes
	4 Detei	mination of	solul	hility of a	spari	ngly soluble sal	t
	5. Acid-	-base titratio	on (st	rong acid a	and w	eak acid vs Na	OH).
	6. Preci	pitation titra	ations	(mixture	of ha	lides only).	/-
	UNIT-II:	Kinetics					
	1. Study	the kinetic	s of	acid hydr	rolysi	is of an ester,	determine the
	temp	erature coe	efficie	ent and a	lso t	the activation	energy of the
	react	1011. he kinetics (of the	reaction h	otwo	en acetone and	iodine in scidic
	2. Study t medi	um by half-	life n	nethod and	l dete	rmine the order	with respect to
	iodin	e and aceto	ne.	ietiioù uiie	acto		with respect to
	UNIT-II	l: Phase dia	igran	1			
	Construct	ion of phase	e diag	gram for a	simp	le binary systen	n
	1. Naphth	alene - phei	nanth	rene			
	2. Benzop	pnenone - di	pnen	yı amıne			
	3. mapiti Adsorpti	naiche - Dipi On	lellyl				
	Adsorptio	on of oxalic	acid	on charce	al &	determination	of surface area
	(Freundli	ch isotherm	only).			a second and a
	-						

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,
Text	Viva Books, New Delhi, 2009.
	2. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	Viswanathan Co. Pvt., 1996.
	3. V.D. Athawale and Parul Mathur, Experimental Physical Chemistry,
	New Age International (P) Ltd., New Delhi, 2008.
	4. E.G. Lewers, Computational Chemistry: Introduction to the Theory
	and Applications of Molecular and Quantum Mechanics, 2 nd Ed.,
	Springer, New York, 2011.
Reference Books	1. J. B. Yadav, Advanced Practical Physical Chemistry, Goel Publishing
	House, 2001.
	2. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in Physical
	Chemistry, 8th edition, McGraw Hill, 2009.
	3. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 1987.
	4. Shailendra K Sinha, Physical Chemistry: A laboratory Manual,
	Narosa Publishing House Pvt, Ltd., New Delhi, 2014.
	5. F. Jensen, Introduction to Computational Chemistry, 3 rd Ed., Wiley-
	Blackwell.
Website and	https://web.iitd.ac.in/~nkurur/2015-
e-learning source	16/Isem/cmp511/lab_handout_new.pdf
Course Learning C	Outcomes (for Mapping with POs and PSOs)
Students will be able	e:
CO1: To recall the p	principles associated with various physical chemistry experiments.
CO2: To scientifical	lly plan and perform all the experiments.
CO3: To observe an	d record systematically the readings in all the experiments.
CO4: To calculate a	nd process the experimentally measured values and compare with
graphical data.	

CO5: To interpret the experimental data scientifically to improve students' efficiency for societal developments.

75	

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	MOLEC	ULAR SPE	CTR	OSCOPY	7		
Course							
Paper No.	Elective	V					
Category	Elective	Year	II	Credits	3	Course	23CHEE305
		Semester	III			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	3	1	-			4	
Prerequisites	Basic kn	owledge of	spect	roscopy			
Objectives of the	To under	stand the in	fluenc	ce of rotat	ion a	nd vibrations of	on the spectra of
course	the polya	omic molec	ules.				
	To study	the principl	e of F	Raman spe	ctros	copy, ESR sp	ectroscopy, EPR
	spectrosc	opy and frag	gment	tation patt	erns i	n Mass spectre	oscopy.
	To highli	ght the signi	fican	ce of Fran	ck-C	ondon princip	le to interpret the
	selection	rule, intensi	ty and	d types of	electi	ronic transition	ns.
	To interp	ret the first	and se	econd orde	er NN	IR spectra in t	terms of splitting
	and coup	ling patter	ns us	sing corre	latior	techniques	such as COSY,
	HETCOR	, NOESY.					
	To carry	out the st	ructur	ral elucida	ation	of molecules	s using different
	spectral to	echniques.	1 1		4		
Course Outline	UNIT-I:	Rotational	and I	Raman Sp	bectro	oscopy:	
	Rotation	al spectra of	diato	omic and p	olya	tomic molecul	les. Intensities of
	rotational	spectral I	ines,	effect of	t 1SO	topic substitu	ition. Non-rigid
	rotators.	lassical the	ory o	of the Ram	an ei	fect, polarizat	bility as a tensor,
	rotational	Raman spe	ius, (f linear an	d asv	y of the Kall	nali elleci, Fule
	and anti-	Stokes line	vil Vil	hrational	u asy Rama	n spectra Ra	aman activity of
	vibrations	s. rule of m	utual	exclusion	. rota	ational fine st	ructure-O and S
	branches,	Polarization	n of R	Raman sca	ttered	l photons.	
	UNIT-II:	Electronic	and	Vibration	al sp	ectroscopy :	
	Ultraviol	et – Visible	spect	troscopy –	tvpe	s of electronic	transitions –
	chromoph	nores and au	xoch	romes - fa	actors	influencing p	ositions and
	intensity	of absorptio	n ban	ds – absor	ption	spectra of die	enes, polyenes
	and α , β	- unsaturate	d car	bonyl com	poun	ds – Woodwa	rd – Fieser rules.
	IR Spectr	oscony – vi	bratio	nal freque	ncies	and factors at	ffecting them _
	identifica	tion of func	tional	grouns -	intra	and inter mole	ecular hydrogen
	bonding -	- finger prin	t regi	on – Far I	R reg	ion – metal lig	and stretching
	vibrations						Sana Stretening
	UNIT-II	I: Mass Spe	ectror	netry :			
	Princi	ples – meas	urem	ent technio	ques -	– (EI, CI, FD,	FAB, SIMS) –
	presentati	on of specti	al dat	ta – molec	ular i	ons – isotope	ions – fragment
	ions of oc	ld and even	electi	ron types -	- rear	rangement ion	ns – factors
	affecting	cleavage pa	tterns	– simple	and r	nulticentre fra	gmentation –
	McI affer	tv rearrance	ment	_ Retro Γ)iele_	Alder fragmer	ntation Mass
	spectro of	hydrocarbo	ne ol	leohole n	nenol	carbonyl co	mounds and
	omines or	d their deriv	nis, al	iconois, pi	ICHOI	s, carbonyi co	mpounds and
	annnes ar	ia their deri	valive	-8.			
	UNIT-IV	: NMR Sp	ectro	scopy: Nu	ıclear	· spin – magne	etic moment of a

	nucleus – nuclear energy levels in the presence of magnetic field, relative populations of energy levels – macroscopic magnetization – basic principles of NMR experiments – CW and FT NMR – ¹ H NMR – chemical shift and coupling constants – factors influencing proton
	spectra of simple organic molecules such as: CH ₃ CH ₂ Cl, CH ₃ CHO, etc., AX and AB spin system – spin decoupling – nuclear Overhauser effect – chemical exchange. ¹³ C NMR – proton decoupled and off-resonance ¹³ C NMR spectra – factors affecting ¹³ C chemical shifts – ¹³ C NMR spectra of simple organic molecules – Basic principles of two–dimensional NMR
	spectroscopy – HOMOCOSY, NOESY and HSQC spectra and their applications (No pulse sequence is expected). Identification of organic compounds using UV, IR and NMR spectroscopy and mass spectrometry
	- problems.
	UNIT-V: ESR and Mossbauer Spectroscopy:
	ESR spectroscopy Characteristic features of ESR spectra, line shapes and line widths; ESR spectrometer. The g value and the hyperfine coupling parameter (A) origin of hyperfine interaction. Interpretation of
	ESR spectra and structure elucidation of organic radicals using ESR spectroscopy; Spin orbit coupling and significance of g-tensors,
	Mossbauer spectroscopy: Doppler shift, recoil energy. Isomer shift, quadrupole splitting, magnetic interactions. Applications: Mossbauer spectra of high and low-spin Fe and Sn compounds
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination question paper)	
Skills acquired	Knowledge Problem solving Analytical ability Professional
from this course	Competency Professional Communication and Transferable skills
Recommended	1 C. N. Banwell and E. M. McCash. Fundamentals of Molecular
Text	<i>Spectroscopy</i> , 4 th Ed., Tata McGraw Hill, New Delhi, 2000.
	2. R. M. Silverstein and F. X. Webster, <i>Spectroscopic Identification</i>
	of Organic Compounds, 6 th Ed., John Wiley & Sons, New York, 2003.
	3. W. Kemp, <i>Applications of Spectroscopy</i> , English Language Book Society, 1987.
	4. D. H. Williams and I. Fleming, <i>Spectroscopic Methods in Organic Chemistry</i> , 4 th Ed., Tata McGraw-Hill Publishing Company, New Delhi, 1988.
	5. R. S. Drago, <i>Physical Methods in Chemistry</i> ; Saunders: Philadelphia, 1992.

Reference Books	1.	P.W. Atkins and J. de Paula, Physical Chemistry, 7th Ed., Oxford
		University Press, Oxford, 2002.
	2.	I. N. Levine, Molecular Spectroscopy, John Wiley & Sons, New
		York, 1974.
	3.	A. Rahman, Nuclear Magnetic Resonance-Basic Principles,
		Springer-Verlag, New York, 1986.
	4.	K. Nakamoto, Infrared and Raman Spectra of Inorganic and
		coordination Compounds, PartB: 5th ed., John Wiley& Sons Inc.,
		New York, 1997.
	5.	J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnetic</i>
		Resonance; Wiley Interscience, 1994.
Website and	1. <u>ht</u>	tps://onlinecourses.nptel.ac.in/noc20_cy08/preview_
e-learning source	2. <u>ht</u>	tps://www.digimat.in/nptel/courses/video/104106122/L14.html
Course Learning () utco	mes (for Mapping with POs and PSOs)

Students will be able:

CO1: To understand the importance of rotational and Raman spectroscopy.

CO2: To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules. **CO3**: To evaluate different electronic spectra of simple molecules using electronic spectroscopy.

CO4: To outline the NMR, ¹³C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹P, ¹⁹F NMR and ESR spectroscopic techniques.

CO5: To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopy techniques.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
C01	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	BIOMOLECULES AND HETEROCYCLIC COMPOUNDS								
Course									
Paper No.	Elective V								
Category	Elective	Year	II	Credits	3	Course	23CHEE306		
		Semester	III			Code			
Instructional	Lecture	Tutorial	Lab	Practice		Total			
hours per week	3	1	-			4			
Prerequisites	Basic know	vledge of ch	emist	ry					
Objectives of	To learn th	e basic conc	epts a	and biolog	ical ii	mportance of b	iomolecules and		
the course	natural pro	ducts.							
	To explain	various of	functi	ions of car	rbohy	drates, protein	s, nucleic acids,		
	steroids an	d normones		of all rales	daan	d tamanaida			
	To undersu	and the func	cture	determine	us an	of biomolecu	les and natural		
	products	lie the stru	cluie	uetermina	ation	of biomolecu	les and natural		
	To extract	and construe	ct the	structure	ofnev	v alkaloids and	terpenoids from		
	different m	ethods.			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				
Course Outline	UNIT-I:	Chemistry	and	metabolis	sm o	f carbohydra	tes: Definition,		
	classificati	on and biold	gical	role of ca	rbohy	drates. onosac	charides: Linear		
	and ring s	tructures (H	Iawor	th formul	a) of	ribose, glucos	se, fructose and		
	mannose (structure de	etermi	nation no	t req	uired), physica	al and chemical		
	properties	of glucose	e and	fructose	e. Di	isaccharides:	Ring structures		
	(Haworth	formula) –	occur	rence, ph	ysical	l and chemica	al properties of		
	maltose, la	actose and	sucro	ose. Polys	sacch	arides: Starch,	, glycogen and		
	centrose –	structure ar	ia pro	operties, gl	lycoly	sis of cardony	urates.		
	UNIT-II:	Steroids an	nd H	ormones:	Ster	oids-Introducti	ion, occurrence,		
	nomenclati	ire, config	guratio	on of s	ubsti	tuents. Diels	hydrocarbon,		
	stereochen	istry, classif	ficatio	on, Diels	nydro	carbon, biolog	ical importance,		
	activity	biosynthesis	of	choleste	rol	from squaler	e Hormones-		
	Introductio	n classifica	ation	functions	of	sex hormones-	androgens and		
	estrogens.	adrenocorti	cal h	ormones-c	ortisc	one and cortiso	ol structure and		
	functions o	f non-steroi	dal ho	ormones-a	drena	line and thyrox	kin.		
	UNIT-III:	Proteins a	nd n	ucleic ac	ids: S	Separation and	l purification of		
	proteins –	dialysis, gel	filtra	tion and e	lectro	phoresis. Catal	bolism of amino		
	acids - tr	ansaminatio	on, o	xidative	deam	ination and c	lecarboxylation.		
	Biosynthes	is of protein	ns: R	ole of nuc	eleic a	acids. Amino a	acid metabolism		
	and ureacy	cle. Structu	re, me	thods for	the sy	ynthesis of nuc	leosides - direct		
	combinatio	on, formation	n of h	eterocycli	c bas	e and nucleosi	de modification,		
	of PNA	and DNA		nucleotid	es. Pl	and solid r	shase synthesis		
	ofoligonuc	leotides	, •••		K III	ouer, sona p	synthesis		
		D	-		• • •	n			
	UNIT-IV:	Proteins a	nd n	ucleic ac	ids: S	Separation and	purification of		
	proteins –	uialysis, gel	nitra	uon and e	dectro	phoresis. Catal	decarboxylation		
	Biosynthes	is of protei	ns R	ole of nuc	leic a	acids Amino a	acid metabolism		
	and ureacy	cle. Structur	re, me	ethods for	the s	vnthesis of nuc	leosides - direct		
	combinatio	on, formation	n of h	eterocvcli	c bas	e and nucleosi	de modification.		
	conversion	of nucleosi	de to	nucleotid	es. Pr	imary and seco	ondary structure		

	of RNA and DNA, Watson-Crick model, solid phase synthesis ofoligonucleotides.
	UNIT-V: Fused Ring Heterocyclic Compounds: Benzofused five membered rings: Indole, isoindole, benzofuran and benzothiophene, Preparation and properties. Benzofused six membered rings: Quinoline and isoquinoline: Preparation by ring closure reactions, Reactions: Mechanism of electrophilic and nucleophilic substitutions, oxidation and reduction reactions.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is a	be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be	
included in the	
external	
examination	
question paper)	Knowledge Drohlem schung, Angletigel skility, Drofessionel
from this course	Competency, Professional Communication and Transforable skills
Recommended	T K L indhorst Essentials of Carbohydrate Chemistry and Biochemistry
Text	Wiley VCH North America 2007
	L L Finer Organia Chemistry Vol 2 5 th adition Degree Education
	Asia 1975
	V K Abluwalia and M Goval Textbook of Heterocyclic compounds
	Narosa Publishing New Delhi 2000
	M K Jain and S C Sharma Modern Organic Chemistry Vishal
	Publishing Co., Jalandhar, Delhi, 2014.
	V. K. Ahluwalia, Steroids and Hormones, Ane books pub., New
	Delhi,2009.
Reference	I. L. Finar, Organic Chemistry Vol-1, 6 th edition, Pearson Education
Books	Asia,2004.
	Pelletier, Chemistry of Alkaloids, Van Nostrand
	Reinhold Co,2000.
	Shoppe, Chemistry of the steroids, Butterworthes, 1994.
	I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal &
	aromatic plants, vol 1 and vol 10, Ukkaz Publications, Hyderabad, 2004.
	M. P. Singh, and H. Panda, Medicinal Heros with their formulations, Daya Publishing House, Dolbi 2005
Wahsita and	pe://www.organic-chemistry.org/
e-learning	ps://www.studvorgo.com/summary.php
source	ps://www.clutchprep.com/organic-chemistry
Course Learning	Outcomes (for Mapping with POs and PSOs)
Students will be al	
CO1. To understan	DIe:
COL. TO understa	nd the basic concepts of biomolecules and natural products.
CO2: To integrate	nd the basic concepts of biomolecules and natural products. e and assess the different methods of preparation of structurally different

CO3: To illustrate the applications of biomolecules and their functions in the metabolism of living organisms.

CO4: To analyse and rationalise the structure and synthesis of heterocyclic compounds. CO5: To develop the structure of biologically important heterocyclic compounds by different methods.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	М	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 - Strong, 2 - Medium, 1 - Low

. .

- - -

Level of	Correlation	between	PSO's	and	CO's	

. . . .

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	COORD	INATION	CHE	MISTRY	– II		
Course	a						
Paper No.	Core XI	1	[]				
Category	Core	Year	II	Credits	5	Course	23CHEC401
		Semester	IV			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	4	1	-			5	
Prerequisites	Basic kno	owledge of i	norga	inic chemi	stry		
Objectives of the	To reco	gnize the f	funda	mental co	oncep	ts and structu	ral aspects of
course	organom	etallic comp	ound	s.			
	To learn	reactions of	of org	ganometal	lic co	ompounds and	their catalytic
	behaviou	r.					
	To identi	fy or predic	ct the	structure	of c	oordination co	mpounds using
	spectrosc	opic tools.					
	To under	stand the str	uctur	e and bond	ding i	n coordination	complexes.
~ ~ ~	To evalua	ate the spect	tral ch	naracterist	ics of	selected comp	lexes.
Course Outline	UNIT-I:	Chemistry	of o	rganomet	allic	compounds: C	lassification of
	organome	etallic comp	ounds	s based on	M-C	bond -18 and 1	6 electron rule;
	Bonding	in metal –	olefi	n complex	xes (e	example: Ziese	's salt), metal-
	acetylene	and metal-a	ullyl c	omplexes	; Meta	al-cyclopentadi	enyl complexes
	– Examp	les and MC) app	roach to	bondi	ing in metalloc	enes; fluxional
	1somerist	n. Metal – c		iyi comple	exes:	MO diagram of	TCO; Structure
	and bond	ling – bond	ung r	nodes, M	U ap	proach of M-C	O bonding, π -
	lower ovi	detion state	ardon	iyi group,	syne	rgistic effect (stabilization of
	lower oxi	lacion state	5 01 11 	alustora	10011 64	yl clusters. Low	an nalyhadral
	skeleton (leatron nai	theo	ry or Wad	– ວແ ລາເຫ	uctures based	on poryneural
		Desction		l cotolyci		orgonomotolli	e compounds:
	Reactions	of organol	netall	lic compo	s under	Oxidative add	ition reductive
	eliminatio	on $(\alpha \text{ and })$	B elir	ninations)	mic	ratory insertio	n reaction and
	metathesi	s reaction. (Drgan	o-metallic	cata]	lysis: Hydroger	nation of olefins
	(Wilkinso	on's catalys	t). hy	vdroformv	latior	n of olefins u	sing cobalt or
	rhodium	catalysts (or	xo pr	ocess), ox	idatic	on of olefin (W	acker process).
	olefin iso	merisation,	wate	r gas shift	t reac	tion, cyclo-olig	gomerisation of
	acetylene	s using Rep	pe's c	atalysts, N	Aonsa	anto process.	
	UNIT-II	I: Inorgani	ic sp	ectroscop	y -I:	IR spectrosco	opy: Effect of
	coordinat	ion on the s	stretch	ning frequ	ency-	sulphato, carbo	onato, sulphito,
	aqua, ni	ro, thiocya	nato,	cyano,	thiou	rea, DMSO c	complexes; IR
	spectrosc	opy of carbo	onyl c	ompounds	s. NM	IR spectroscopy	- Introduction,
	applicatio	ons of 1H,	15N,	19F, 31H	P-NM	IR spectroscop	y in structural
	identifica	tion of inorg	ganic	complexe	s, fluz	xional molecule	es, quadrupolar
	nuclei- ef	fect in NMI	R spec	ctroscopy.			
	UNIT-IV	': Inorgani	c spe	ctroscopy	- II :	Introductory te	rminologies: g
	and A par	rameters-de	finitic	on, explana	ation	and factors affe	ecting g and A;
	Applicati	ons of ESR	to coo	ordination	comp	ounds with one	and more than
	one unpai	red electron	ıs – hy	perfine ar	nd sec	ondary hyperfin	ne splitting and
	Kramer's	doublets; E	ESR s	pectra of `	V(II),	Mn(II), Fe(II),	Co(II), Ni(II),
	Cu(II) co	omplexes, t	ois(sal	licylaldim	ine)co	opper(II) and	[(NH ₃) ₅ Co-O ₂ -
	$Co(NH_3)$	$[5]^{5+}$ Mossb	auer	spectrosc	opy	– Mossbauer	effect, Recoil

	energy, Mossbauer active nuclei, Doppler shift, Isomer shift, quadrupole
	splitting and magnetic interactions. Applications of Mössbauer spectra
	to Fe and Sn compounds.
	UNIT-V: Photo Electron Spectroscopy: Theory, Types, origin of fine
	structures - shapes of vibrational fine structures – adiabatic and vertical
	transitions, PES of homonuclear diatomic molecules (N_2 , O_2) and
	heteronuclear diatomic molecules (CO, HCl) and polyatomic molecules
	(H ₂ O, CO ₂ , CH ₄ , NH ₃) – evaluation of vibrational constants of the above
	molecules. Koopman's theorem- applications and limitations. Optical
	Rotatory Dispersion – Principle of CD and ORD; Δ and λ isomers in
	complexes, Assignment of absolute configuration using CD and ORD
	techniques.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Protessional
from this course	Competency, Professional Communication and Transferable skills.
<u> </u>	
Recommended	1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition,
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition,
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry:
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013.
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann,
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New North 1099
Recommended Text	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988.
Recommended Text Reference Books	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988. Crabtree, Robert H. The Organometallic Chemistry of the Transition
Recommended Text Reference Books	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988. Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000.
Recommended Text Reference Books	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988. Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and
Recommended Text Reference Books	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988. Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1st
Recommended Text Reference Books	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988. Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1st edition, Springer-Verlag Berlin Heidelberg, 2011.
Recommended Text Reference Books	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988. Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1st edition, Springer-Verlag Berlin Heidelberg, 2011. Concepts and Models of Inorganic Chemistry, B. Douglas, D.
Recommended Text Reference Books	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988. Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1st edition, Springer-Verlag Berlin Heidelberg, 2011. Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn.
Recommended Text Reference Books	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988. Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1st edition, Springer-Verlag Berlin Heidelberg, 2011. Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn. K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders:
Recommended Text Reference Books	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988. Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1st edition, Springer-Verlag Berlin Heidelberg, 2011. Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn. K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia, 1976.
Recommended Text Reference Books	 J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988. Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1st edition, Springer-Verlag Berlin Heidelberg, 2011. Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn. K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia, 1976. R. S. Drago, Physical Methods in Chemistry; Saunders:

Website and	https://archive.nptel.ac.in/courses/104/101/104101100/
e-learning source	
a r r r	

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: Understand and apply 18 and 16 electron rule for organometallic compounds CO2: Understand the structure and bonding in olefin, allyl, cyclopentadienyl and carbonyl containing organometallic compounds

CO3: Understand the reactions of organometallic compounds and apply them in CO4: understanding the catalytic cycles

CO5: Identify / predict the structure of coordination complexes using spectroscopic tools such as IR, NMR, ESR, Mossbauer and optical rotatory dispersion studies to interpret the structure of molecules by various spectral techniques.

CO-PO Mapping (Course A	Articulation Matrix)
--------------------------------	----------------------

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	М
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

Title of the	ANALY	FICAL INS	TRU	MENTA	TION	N TECHNIQU	JES
Course	PRACTI	CAL-IV				-	
Paper No.	Core XII	[
Category	Core	Year	II	Credits	5	Course	23CHEP402
		Semester	IV			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	-	1	9			10	
Prerequisites		I.				L	
Objectives of the	To design	chromatogra	phic r	nethods for	· ident	ification of spec	eies.
course	To analyze	e different co	nstitu	ents throug	h inst	rumental method	ds of analysis.
	To evalua	ate different	cont	aminants	in ma	aterials using t	urbidimetry and
	conductivi	ity measurem	ents.	1			. • 1
	To design	experiments	for an	alysis of in	lorgan	ic and organic r	naterials.
Course Outline		e constituents	s m m	ateriais usi	ng en	iission and adsor	rption techniques.
Course Outline	1 D	atarmination	of th		ant co	nductance of a	weak acid at
	I. D	fferent conc	entra	tions and y	verify	ving Ostwald di	ilution law
	C	alculation of	f the <i>c</i>	dissociatio	n cor	stant of the ac	id
	2 C	onductomet	ric tit	ration of a	mixt	ure of HCl and	CH₂COOH Vs
	2. C.	aOH		ution of u	шл	ure of free and	
	3. C	onductomet	ric tit	ration of N	JH₄C	l Vs NaOH.	
	4. C	onductometr	ric tit	ration of C	CH ₃ C	OONa Vs HCl	
	5. Po	otentiometri	c titra	tion of a r	nixtu	re of HCl and (CH ₃ COOH Vs
	Ν	aOH					-
	6. D	eterminatior	ı of p	K _a of weat	k acio	h by EMF meth	nod.
	7. Po	otentiometri	c titra	tion of FA	AS Vs	$K_2Cr_2O_7$	
	8. Po	otentiometri	c titra	tion of KI	Vs k	KMnO _{4.}	
	9. Po	otentiometri	c titra	tion of a r	nixtu	re of Chloride	and Iodide Vs
	A	gNO _{3.}					
	10. D	eterminatior	n of th	ne pH of b	uffer	solution by EN	/IF method
	us	sing Quinhy	drone	and Calor	mel e	lectrode.	
	UNIT-II	:					
	1. Es	stimation of	Fe, C	u and Ni	by co	lorimetric metl	hod.
	2. Es	stimation of	Na a	nd K by fl	ame j	photometric me	ethod.
	3. L	Determinatio	n of s	pectropho	otome	trically the mo	le ratio of the
	Ie	rrithiocyana	te co	mplex and	equi	librium constai	nt for the
		omplex form	ation	na amount	(mol	/I) of forrious	nida prosant in
	4. D	e given solu	tion 1	ie amount		(L) OI IEITIC yai	nde present m
	5 D	etermination	n of th	ising cych ne diffusio	n coe	efficient of ferr	icvanide using
	J. D	clic voltam	metry				ic yanice using
	6 D	etermination	n of th	ne standard	d rede	ox potential of	ferri-
	fe	rrocvanide r	edox	couple us	ing c	velic voltamme	etrv.
	7. Es	stimation of	the a	mount of s	sulph	ate present in t	he given
	SC	olution using	Nep	helometric	turb	idimeter.	0
	8. E	stimation of	the a	mount of i	nitrat	e present in the	given solution
	us	sing spectrop	ohoto	metric me	thod.	-	-
	9. H	eavy metal a	analys	sis in texti	les ar	nd textile dyes	by AAS
	10. D	eterminatior	n of ca	affeine in	soft d	lrinks by HPLC	2
	11. A	nalysis of w	ater c	luality thro	ough	COD, DO, BO	D
	m	easurements	5.				

	12. Assay of Riboflavin and Iron in tablet formulations by
	spectrophotometry
	13. Estimation of chromium in steel sample by spectrophotometry
	14. Determination of Stern-Volmer constant of Iodine quenching by
	fluorimetry
	15. Determination of ascorbic acid in real samples using Differential
	Pulse Voltammetry and comparing with specifications
	16. Separation of (a) mixture of Azo dyes by TLC (b) mixture of
	metal ions by Paper chromatography
	17. Estimation of chlorophyll in leaves and phosphate in waste water
	by colorimetry.
	18. Estimation of Fe(II) by 1,10 phenonthroline using
	spectrophotometry
	UNIT-III: Interpretation and identification of the given spectra of
	various organic compounds arrived at from the following instruments
	1.UV-Visible
	2.IR
	3.Raman
	4.NMR
	5.ESR
	6.Mass etc.,
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Decemental	1 Veedly Trat leads of Duratical Operation Characters 5th Ed.
Recommended	1. Vogel's lext book of Practical Organic Chemistry, 5th Ed,
Text	ELBS/Longman, England, 2005.
	2. G. H. Jellery, J. Bassell, J. Menunani and R. C. Denney, Vogel S Touthook of Quantitating Chaming Anglusis 6th od. ELDS 1080
	2 L D. Woolling, Inongania Experiments; VCH: Weinheim
	5. J. D. Woomins, <i>morganic Experiments</i> , VCH. Weimenn,
	A B Viewanathan and D S Daghayan Dractical Dhysical Chemistry Viva
	Rooks New Delbi 2009
	5 Sundaram Krishnan Raghayan Practical Chemistry (Part II) S
	Viswanathan Co. Pvt., 1996.
Reference Books	1. N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry –
	Labmanual, S. Viswanathan Co. Pvt. Ltd, 2009.
	2. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 2011.
	3. J. B. Yadav, Advanced Practical Physical Chemistry, Goel
	Publishing House, 2001.

	4. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in
	Physical Chemistry, 8th edition, McGraw Hill, 2009.
	5. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 1987.
Website and	1 https://hit.lu/20ESE7t
e-learning source	$1. \operatorname{Imps://on.ny/sQESF/l}$
C	2. https://bit.ly/3QANOnX

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To recall the principles associated with various inorganic organic and physical chemistry experiments

CO2: To scientifically plan and perform all the experiments

CO3: To observe and record systematically the readings in all the experiments

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students efficiency for societal developments.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

СО /РО	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos					

Title of the	CHEMIST	TRY OF NAT	ΓURA	AL PRODU	CTS	5					
Course											
Paper No.											
Category	Core	Year	II	Credits	3	Course	23CHEE404				
		Semester	IV			Code					
Instructional	Lecture	Tutorial	Lab	Practice		Total					
hours per	3	1	-			4					
week											
Prerequisites	Basic knov	vledge of gene	eral cl	hemistry							
Objectives of	To learn the basic concepts and biological importance of biomolecules and										
the course	natural pro	ducts.									
	To explain various of functions of carbohydrates, proteins, nucleic acids,										
	steroids and	d hormones.									
	To underst	and the functi	ons o	t alkaloids a	and te	erpenoids.	1 / 1				
	To elucidate the structure determination of biomolecules and natural										
	products.	and construct	the a	transforme of m		Ilcoloids and t	tomonoida from				
	different m	and construct	the s	iructure of f	lew a	likalolus and l	terpenoids from				
Course		lethous.									
Outline	UNIT-I: A	Ikaloids: Inti	oduct	tion – Struct	ure,	synthesis and	biological				
Outime	importane	of Piperine, N	licotir	ne, Atropine	, Qui	inine, Cocaine	e, Papaverine				
	and Morph	ine. Structura	1 Eluc	cidation of F	Papav	verine and Atr	opine.				
	UNIT-II:	Terpenoids:	Intro	luction - c	lassif	ication, strue	cture, synthesis				
	and uses of	of Camphor,	Vetiv	ones, Squa	lene	and Zingiber	rine, Structural				
	Elucidation	n of Camphor	and 2	Lingiberine			T 1 1				
	UNIT-III:	Anthocyanii	nes a	nd flavones	: An	thocyanines:	Introduction to				
	anthocyani	nes. Structu	re a	and genera	al r	nethods of	synthesis of				
	antnocyani Diologiaal	nes. Cyanidin	e chic	oride: structi	ire ar	a determination	ion of Flavones:				
	biological	inportance o	n nav	ones. Struct	ure a	tion and imp	atton of flavone				
		Jus. Quercen	II. Su		1111112		ortance.				
	UN11-1V:										
	Steroids a	nd Hormone	s: Oc	currence- D	iel's	hydrocarbon	- nomenclature				
	and stereo	chemistry o	f Ste	roids. Ster	ols:	Structural	elucidation of				
	cholesterol	.Bile acid- cł	nolic a	acid.		Shadunul					
	Sex hormo	ones: Structur	e and	l synthesis_	Estr	ogens- estron	e, estradiol and				
	estriol. Ges	stogens: prog	estero	ne – Androg	gens:	testosterone a	and androstrone				

	UNIT-V: Natural Dyes: Occurrence, classification, isolation, purification,
	properties, colour and constitution. Structure and synthesis of indigoitin and
	alizarin.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is a	be solved
part of internal	(To be discussed during the Tutorial hours)
component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 1,
Text	Himalaya Publishing House, Mumbal, 2009.
	2. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 2,
	Himalaya Publishing House, Mumbal,2009.
	5. O. P. Agarwai, Chemistry of Organic Natural Products, vol. 1, Goel Publishing House, Meerut 1997
	0 P. Agarwal, Chemistry of Organic Natural Products, Vol. 2
	Goel Publishing House, Meerut, 1997.
	5 J. J. Finar, Organic Chemistry Vol-2, 5 th edition, Pearson
	Education Asia 1975
Reference	1. L. L. Finar, Organic, Chemistry, Vol-1, 6 th edition, Pearson
Books	Education Asia.2004.
	2. Pelletier, Chemistry of Alkaloids, Van Nostrand
	Reinhold Co,2000.
	3. Shoppe, Chemistry of the steroids, Butterworthes, 1994.
	4. I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal &
	aromatic plants, Vol 1 and Vol 10, Ukkaz Publications,
	Hyderabad,2004.
Website and	https://sites.google.com/site/chemistryebookscollection02/home/organic-
e-learning	chemistry/organic
source	

Course Learning Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To understand the biological importance of chemistry of natural products.

CO2: To scientifically plan and perform the isolation and characterization of synthesized natural products.

CO3: To elucidate the structure of alkaloids, terpenoids, carotenoids, falvanoids and anthocyanins.

CO4: To determine the structure of phytochemical constituents by chemical and physical methods.

CO5: To interpret the experimental data scientifically to improve biological activity of active components.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	М	S	S	S	S	Μ
CO 2	М	S	S	S	S	М	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

CO-PO Mapping (Course Articulation Matrix)

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
C05	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	5.0	5.0	5.0	5.0	5.0

Title of the	POLYME	R CHEMIST	ΓRY									
Course												
Paper No.	Elective V	I										
Category	Core	Year	II	Credits	3	Course	23CHEE405					
		Semester	IV			Code						
Instructional	Lecture	Tutorial	Lab	Practice		Total						
hours per week	3	1	-			4						
Prerequisites	Basic knov	vledge of gene	eral cl	nemistry								
Objectives of	To learn th	e basic conce	pts an	d bonding in	n pol	ymers.						
the course	To explain	various types	of po	olymerizatio	n rea	ctions and ki	netics.					
	To underst	To understand the importance of industrial polymers and their synthetic										
	uses.											
	To determ	ne the molecu	ilar w	eight of pol	ymer	S.						
	To predict	the degradation	on or	polymers ar	nd co	nductivities.						
Course Outline		naracteriza	uon, .	violecular	weig	nt and its I	Determination:					
	etructure	a secondary b	onu it	rmal moth	ade	Ta molecul	ergy, molecular					
	stability D	etermination	of M	allar ma	ous,	nolymers: N	a unstribution, a					
	molecular i	nass (M _n) and	Weig	t average i	nole	cular mass (N	(w) of polymers					
	Molecular	weight detern	ninatio	on of high p	olvn	ers by physic	cal methods.					
	UNIT-II:	Mechanism	and	kinetics of	Polv	merization:	Chain growth					
	polymeriza	tion: Cationi	ic, an	ionic, free	radi	ical polymer	ization, Stereo					
	regular po	lymers: Ziegl	er Na	atta polyme	rizati	ion. Reaction	h kinetics. Step					
	growth pol	ymerization, 1	Degre	e of polyme	erizat	ion.	-					
	UNIT-III:	Techniques	of P	olymerizati	ion a	and Polymer	· Degradation:					
	Bulk, Solu	tion, Emulsi	on, S	uspension,	solid	, interfacial	and gas phase					
	polymeriza	tion. Types	of Po	olymer Deg	grada	tion, Therma	al degradation,					
	mechanica	degradation,	photo	odegradation	ı, Ph	oto stabilizers	s, Solid and gas					
	phase poly	merization.				C C'1 C						
	UNIT-IV:	Industrial P	'olym	ers: Prepara	ation	of fibre for	ming polymers,					
	elastomeric	c material.	Iner	moplastics:	P0	Chlorida D	Polypropylene,					
	othylono	e, Polyacrylo	nurne pol	e, Poly VI	nyı	Chioride, P	ory tetranuoro					
	formaldehy	invioli and ide and expos	ide re	yester. 11 sin Elaston	ler III	Natural rubb	er and synthetic					
	rubber - Ru	ina - N Buna-	S and	neonrene (ond	acting Polym	ers: Elementary					
	ideas: exan	ples: poly sul	lphur	nitriles, poly	phe	nvlene, polv r	overole and poly					
	acetylene.	Polymeth	vlme	thacrylate,	1	olvimides.	polyamides.					
	polyuretha	nes, polyureas	, poly	ethylene an	d pol	lypropylene g	glycols.					
	UNIT-V: I	Polymer Proc	essin	g: Compour	nding	: Polymer Ac	ditives: Fillers,					
	Plasticizers	s, antioxidants	, ther	mal stabilize	ers, fi	re retardants	and colourants.					
	Processing	Techniques:	Caler	ndaring, die	cast	ing, compres	sion moulding,					
	injection 1	noulding, bl	ow	moulding a	and	reinforcing.	Film casting,					
	Thermofoa	ming, Foam	ing.	Catalysis a	ind	catalysts –	Polymerization					
	catalysis, c	atalyst suppo	ort, cl	ay compour	nds,	basic catalys	st, auto-exhaust					
Enter 1-1	catalysis, v	anadium, hete	erogei	neous cataly	sis a	nd active cen	tres.					
	Questions	related to the	above	iopics, from	n var	ious competi	UVE					
Component (is	be solved	IIS UPSC / II	Χ Β / Γ	NET/ UGC-0	COIR	JUATE/IN	NFSC others to					
a part of	(To be disc	ussed during	the T	utorial hour	c)							
internal		ussed during		utoriai nour	5)							
internal												

component								
only, Not to be								
included in the								
external								
examination								
question paper)								
question puper)								
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional							
from this course	Competency, Professional Communication and Transferable skills.							
Recommended	1. V.R. Gowariker, <i>Polymer Science</i> , Wiley Eastern, 1995.							
Text	2. G.S. Misra, Introductory Polymer Chemistry, New Age International							
	(Pvt) Limited, 1996.							
	3. M.S. Bhatnagar, A Text Book of Polymers, vol-I & II, S.Chand &							
	Company, New Delhi, 2004.							
Reference	1. F. N. Billmeyer, Textbook of Polymer Science, Wiley Interscience,							
Books	1971.							
	2. A. Kumar and S. K. Gupta, Fundamentals and Polymer Science and							
	Engineering, Tata McGraw-Hill, 1978.							
Course Learning	Course Learning Outcomes (for Mapping with POs and PSOs)							

Students will be able:

CO1: To understand the bonding in polymers.

CO2: To scientifically plan and perform the various polymerization reactions.

CO3: To observe and record the processing of polymers.

CO4: To calculate the molecular weight by physical and chemical methods.

CO5: To interpret the experimental data scientifically to improve the quality of synthetic polymers.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	Μ	S	S	S	S	Μ
CO 2	Μ	S	S	S	S	Μ	S	S	S	S
CO 3	S	S	Μ	S	S	S	S	Μ	S	S
CO 4	Μ	S	S	S	S	Μ	S	S	S	S
CO 5	Μ	S	Μ	S	S	Μ	S	Μ	S	S

3 – Strong, 2 – Medium, 1 - Low

Level of Correlation between PSO's and CO's

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	RESEARCH TOOLS AND TECHNIQUES										
Paper No.	SEC III										
Category	Skill	Year	Π	Credits	2	Course	23CHES406				
	Enhancement	Semester	IV			Code					
	Course										
Instructional hours	Lecture	Tutorial	Lab Practice			Total					
per week	1	1	- 2								
Prerequisites	Basics of Statistics, Computer and Internet tools										
Objectives of the	To sensitize the advancement of Chemistry through a systematic										
course	research approach										
Course Outline	UNIT - 1 Meaning of Research Purpose of research, scientific method, role of theory, characteristics of research - Types of research: fundamental or pure research, applied research, action research, historical research, experimental research.										
	Primary, secondary and tertiary sources - Abstracts in science and technology: chemical abstracts, chemical titles, current chemical reactions, current contents, science citation index - Classical and comprehensive reference works in chemistry- treatises and reviews.										
	UNIT - 3 Chemical Abstracts General subject index, chemical substance index, formula index, index of ring systems, author index, patent index.										
	UNIT - 4 Scientific Writing Scientific writings: research reports, thesis, journal articles, and books - requirement of technical communications: eliminating wordiness and jargon- tautology, superfluous phrases - Steps to publishing a scientific article in a journal: types of publications-communications, articles, reviews- plagiarism checking.										
References:	UNIT - 5 Computer Searches of Literature CA Alerts, SciFinder, ChemPort, ScienceDirect, Google Scholar, Research Gate and Mendeley. Research methodology, C. R. Kothari, New age International										
	Publishers, Second Edition, 2004, New Delhi.										

Title of the	INDUSTRIAL	CHEMIST	RY								
Course											
Paper No.	SEC III										
Category	Skill	Year	II	Credits	2	Course	23CHES407				
	Enhancement	Semester	IV			Code					
	Course										
Instructional	Lecture	Tutorial	Lab	Lab Practice Total							
hours per week	1	1	-		2						
Prerequisites	Basics of Industrial applications of Chemistry										
Objectives of	To understand how Chemistry is useful in large scale applications										
the course											
Course Outline	Unit-I: Fuels										
	Solid, liquid and gaseous fuels – ultimate and proximate analysis – calorific										
	values - grading of coal - Liquid fuels - flash point, aniline point, octane										
	number and carbon residues. Gaseous fuels - producer gas and water gas										
	Unit-II: Chemistry of Non-Transition Elements										
	Peroxo compounds of boron, carbon and sulphur – synthesis, properties and										
	structures of boranes, carboranes, borazines, silicates and silicones -										
	carbides – phosphazenes – sulphur - nitrogen compounds.										
	Unit-III: Fertilizers										
	Fertilizer industries in India, manufacture of ammonia, ammonium salts,										
	urea, nitrates, phosphates and superphosphates – mixed fertilizers –										
	nitrogen fixation.										
	Unit- IV: Water Technology										
	Hardness of water, determination of hardness of water using EDTA										
	method, zeolite method-Purification techniques-BOD, COD										
	Unit- V: Separation and purification techniques:										
	Extraction, distillation and crystallization. Chromatography: principle and										
T	application of column, paper and thin layer chromatography										
Keferences	B. K. Sharma, Industrial Chemistry, GOEL Publishing House, 15 th										
	Edition, 2006, N	/leerut.									