
22CSPC406 DESIGN AND ANALYSIS OF
ALGORITHMS

L T P C
3 0 0 3

Unit-I INTRODUCTION

ALGORITHM:
A finite set of instruction and specified a sequence of operation is to be carried out in order to

solve a specific problem or a class of problem
CHARACTERISTICS:
*Input
*Output
*Definiteness
*Finiteness
*Effectiveness
*Uniqueness

*Feasible
*Flexibility
*Efficient
*Independent
*Correctness
*Simplicity
ADVANTAGES:
*Effective communication
*Easy debugging
*Easy and efficient coding
*Independent of programming languages
DISADVANTAGES:
*Developing algorithm for complex problem could be time consuming and difficult to
understand
*It is tedious task to understand the algorithm
NEED OF ALGORITHM:
*To understand the basic idea of the problem
*Find an approach to solve the problem
*Efficiency of executing techniques
*To understand the basic principal of designing algorithm.
Computer science is the systematic study of algorithm and data structure specified the common
property the mechanical and linguistic realization and application.
ALGORITHMIC THINKING:

Algorithmic thinking is an analytics skill that is required for writing effective to solve the
problem.
ALGORITHMICS:
Algorithmic is the art of designing, implementing, analyzing algorithm.

PROBLEMS:
*Computational
*No computational
COMPUTATIONAL PROBLEM:
*Structuring problems and search problems
*Construction problem
*Decision problem
*Optimization problems
FACTORS:
*Relationship between input and output
*Legal input and correct output
FUNDAMENTAL STAGES OF PROBLEM SOLVING:
1) Understanding the problem
2) Planning an algorithm
3) Designing an algorithm
*A skilled designer algorithmic is called algorists.
*The algorithm can be coded this stage is called algorithm specification
3 Stages:
*Natural language
*Pseudo code
*Programming language
4) Validity and verification of algorithm
5) Analysis an algorithm
6) Implementing an algorithm
7) Performing empirical analysis

CLASSIFICATION OF ALGORITHM:

Algorithm

Based on based on area of based on design based on

Implementation specification tractability

BASICS OF ALGORITHM ANALYSIS:

Measure for algorithm
Analysis

Subjective objective
Measures measures

Dynamic static
Objective objective
Measure measure

Analysis of a program involves two factors
*Run time
*Compile time
TIME COMPLEXITY:

Time complexity is a measure of how much run time an algorithm required for executed when
the input size is scaled.
CLASS OF FUNCTIONS:
Types of time functions

*Constant-0(1)
*logarithmic-0(log n)
*Linear -0(n)
*Quadratic-0(n2)
*Cubic-0(n3)
*Exponential-0(2^n)

MEASURING RUN TIME:
*STEP COUNT
*OPERATION COUNT
*ASYMPOTIC ANALYSIS
*RECURRENCE RELATIONS
*AMORTIZED ANALYSICS
STEP COUNT:

*Ullman proposed step count
*To determine upper and lower bound.

OPERATION COUNT:

* Knuth proposed operation count.
*To determine worst, best, average

STEP COUNT:
a) Declarative statement

*With no initialization have a statement count of zero. Incase initialization made step count
is 1.

b) Comments and brackets
Step count is zero.

C) Expression
Step count is 1.

d) Assignment statement, function return statement and other statement
Step count is 1.

Algorithm test(A,B,C)

Begin

A=A+1;

C=A+2;

D=A+B;

End

Total count is obtained by multiplying the frequency and steps for execution

Step no. Program Steps for
execution

Frequency Count

1
2
3
4
5
6

Algorithm
Begin
A=A+1
C=A+2
D=A+B
End

0
0
1
1
1
0

-
-
1
1
1
-

-
-
1
1
1
-

Total= 3
OPERATION COUNT:

It is no of operation is counted instead step for algorithm analysis the operation can be divide
into2 categories.
*Elementary or basic
*Non elementary or non-basic
Some of commonly used basic operation are
*Assignment operation
*Arithmetic operation
*Logical operation

*Compression operation
Non elementary operation involves many elementary operations sorting, finding or maximum or
minimum of array etc….

Step required for performing operation:
*Count the no of basic operation of the program and express as a formula
*Simplify the formula
*Represent the time complexity as a function of operation count

RULES FOR FINDING THE OPERATION COUNT FOR AN
ALGORITHM:

SEQUENCE:
Begin
S1 required m operation
S2 required n operation
End

SELECTION:
Statement p requires m operation
Statement q requires n operation

The maximum no of operation of either if part or he else part is considered as the operation count
REPETATION:

If a loop execute a task n times and if a task involves m operation then task is m x n this is
called multiplication principle.
1)
Algorithm
Step no, Algorithm

segment
Elementary
operation
accounted for

Operation cost Repetation

1

2
3

4

5

6

Algorithm
swap(a,b)
Begin
Temp=a;

A=b;

B=temp;

end

-

-
Assignment
operation
Assignment
operation
Assignment
Operation
-

-

-
C1

C2

C3

-

0

0
1

1

1

0
T(n)= C1+C2+C3

This is Constant time algorithm.

For loop:

1) For(i=0;i<n;i++){

Statements; ----time complexity=O(n)

}

2) For(i=n;i>n;i--){
Statements; ----time complexity=O(n)

}

3) For(i=0;i<n;i=i+2){

Statements; ----time complexity=O(n/2)

}

4) For(i=0;i<n;i++){ -----n+1
For(j=0;j<n;j++){ -----n(n+1)
Statements; -----n*n
}}
Time complexity-T(n)=O(n2)

5) P=0;

For(i=1;p<=n;i++){

P=P+i;

}

i p
1
2
3
.
.
.
k

0+1=1
1+2=3
1+2+3=6
.
.
.
.

1+2+3+…..+k=(k(k+1))/2

p =(k2+k)/2

Assume,

p>n

=(k2+k)/2 >n

=k2>n

K=√n

O(n)= √n

While:

1) I=0 -----1

While(i<n){ -----n+1

Statement; -----n

I++; -----n

} ------------

3n+2

Time complexity=O(n)

2)a=1; ----1

While(a>b){ ----n+1

Statement; ----n

A=a*2; ----O(log2n)

}

Time complexity=O(log2b)

3)i=1;
While(i>1){
Statement;
i=i/2;
}
Time complexity=O(log n)

If:
1)While(m!=n){

If(m>n)

M=m-n;pl

Else

M=n-m

}

Time complexity=O(n)

2)algorithm test(n){

If(n<5){

Printf(n);

}

Else{

For(i=0;i<n;i++){

Printf(n);

}}}

Best case time complexity=O(1)

Worst case time complexity=O(n)

BEST, WORST, AVERAGE CASE COMPLEXITY:
Worst, best, average case efficient of algorithm can be estimated by considering the

different distribution of input data.
WORST CASE COMPLEXITY AND UPPER BOUND:

It is defined t(n) has the complexity function w(n) of the worst case input for which the
algorithm takes maximum time and also cause a computer to run lower.

W (n) =max
Example: w (n) =0(n) linear search
BEST CASE COMPLEXITY AND LOWER BOUND:

The best case of analysis give the minimal computation of algorithm for all the validity input
of the algorithm

B (n) =min
Example: b (n) =1 linear search
AVERAGE CASE COMPLEXITY:

Average case analysis assume that input is a random and provide predation about the
running time of the algorithm for random input
BINARY SEARCH TREE

*Best case-searching root elements
*Worst case-searching leaf elements

ASYMPTOTIC ANALYSIS:
*It is analysis of a given algorithm with larger value of input data. it is theory of

approximation.
*It can be very effective for algorithm analysis for finding exact time complexity is difficult

for process of counting.

ASYMPOTIC NOTATIONS:
This are helpful in classify algorithm and also specify upper and lower bound of an

algorithm. All time functions are of the form t:n->r the functions t evaluates only for integral
natural number and r is the positive real number.
BIG OH NOTATION:

It can be used in following incident for expressing upper bound or worst case algorithm while
expressing time complexity is almost condition.
Let g and h be a set of two functions that map a set of two natural numbers through a set of
positive numbers t=n;R>=0 let o(g) is a similar rate of growth with relation t(n)=O(g(n)) holds
true if there exits two positive constants c and n0 such that t(n)<=c* g(n)

The function t(n) is said to be O(big oh) of g(n). this is denoted as t(n) ε O(g(n)) or t(n)=O(g(n))

Then implies that t(n) is said to be O(big oh) of g(n) .then approximately g(n) function (i.e) a function with a
growth rate less than or equal to that of g(n) this implies that t grows at a slower rate than a constant time g(n)
for the all values of larger input of size N.

Time c*g(n)

T(n)

input n

example:

t(n)=2n+3

2n+3 <= 10 n n=1

T(n)<=O(g(n))

2n+3<=2n+3n

2n+3<=5n

T(n)εO(g(n))

2n+3<=2n2+3n2

T(n)=O(n2)

BIG OMEGA NOTATION:
It can be used in following incident for expressing lower bound or best case algorithm

while expressing time complexity is almost condition.
Definition:
Let t and g be two function that map a of set of natural number through a set of position
realnumbers t=N->R<=0. Let P(g(n)) holds true if there exists two positive constants c and n0

such that t(n)>=c*g(n).
The function t(n) is said to be Ωof g(n).this is denoted as t(n)εΩ(g(n)) or t(n) =Ω(g(n))
This implies that t(n) never takes more than approximately g(n) function (i.e) a function with growth rate
constant time that of g(n).

t(n)

c*g(n)

time

input n

example:

t(n)=2n+3

2n+3>=1*n

2n+3>=1*log n

Big theta notation:

This notation gives the both upper bound and lower bound of algorithm . let t and g
two function that map a set of natural numbers to a set of positive real numbers .let
the relationship c1.g(n)<=f(n)<=c2.g(n) for all n>=n0 and for constants c1 and c2
then it can be represented as t(n)= Θ(g(n))

That is t(n) grows at a same rate of constants time g(n) for sufficiently large value
of n.

time c2.g(n)

c1.g(n)

input n

example:

t(n)=n2log n+n

1*n2log n<=n2log n*n=10n2log n

Θ(n2log n)

Little oh notation

It can be used instead of big oh notation as a little oh notation represents a lower
bound the relation t(n)=og(n)) holds good if the two positive constants c and n0 such that
t(n)<c*g(n)

Little omega notation:

The relation t(n)=ω (g(n)) holds good if the two positive constant c and n0 such that
tn>cx g(n)

Tilde:

The notation helpful for when function t(n) and g(n) grows at the same rate.

Name of the
notation

What it means In terms of limit How it is
represented

Equivalent to

O(big oh) Growth of t(n) is
<=the growth of
g(n)

Limnto ∞
t(n)/g(n)=
c

c>=0

T(n)=O(g(n)) <

Ω(big omega) Growth of t(n) Lim n to ∞ T(n)= Ω(g(n)) >

is>=the growth
of g(n)

t(n)/g(n)=0

Θ(theta) Growth of t(n) is
>= the growth of
g(n)

Lim n to ∞
t(n)/g(n)=c1
c>0

T(n)= Θ(g(n)) ~

o(little oh) Growth of t(n) is
<< the growth of
g(n)

Lim n to ∞
t(n)/g(n)= 0

T(n)=o(g(n)) <

ω(little omega) Growth of t(n) is
>> the growth of
g(n)

Lim n to ∞
t(n)/g(n)=∞

T(n)=ω(g(n)) >

~(tilde) Growth of t(n) is
= to the growth
of g(n)

Lim n to ∞
t(n)/g(n)=1

T(n)~g(n) =

ASYMPOTIC RULES:
*Reflectivity rule
*Transitive rule
*Law of composition
*Multiplication rule
*Law of addition

Reflexivity rule:

For any complexity function g(n) the reflexivity property is given as t(n)=O(g(n)), t(n)= Ω
(g(n)),t(n)= Θ(g(n))

Transitive rule:

if t(n)=O(g(n)) and g(n)=O(h(n)) then transitive rule defines as t(n)=O(h(n))

Law of composition:

O(O(t(n)))=O(t(n))

Law of addition:

Assume that the algorithm a is written in such a way that some portion of have complexity
n,n2,log n and some have n+log n+n2. The law of addition states the following.

T(n)+g(n)=O(max(t(n),g(n)))

T(n)+g(n)= Ω (max(t(n),g(n)))

T(n)+g(n)= Θ (max(t(n),g(n)))

Multiplication rule:

For i=1 to n do -------execute n+1 times

Perform operation O(1)----i
execute n time

End for

O(1)=)(n)

If there are two loops the inner loop could be executed n+1 times this is called the multiplication
rule.

SPACE COMPLEXITY ANALYSIS:
Space analysis fixed components and variable port fixed components is defined as portion of

memory that are independent of input output.
ANALYSIS OF RECURSIVE ALGORITHM THROUGH RECURRENCE

RELATIONS:
*To analysis the recursive algorithm.
*Recurrence equations defines a sequence using the elements of the sequence .a sequence is a

finite or infinite list of no’s.
*The recurrence relation is basically definition of a function I in terms of itself
*The recurrence equation are difference equation is a descript equivalent of a differential

equation that express a terms of sequence as a function of residing terms.
CLASSSIFICATION:

Recurrence relation

Linear recurrence non-linear recurrence

LINEAR RECURRENCE:
 A linear recurrence equation for a sequence {t0,t1,t2,…..tn} express the final terms tn as

a linear combination of its terms in a polynomial form.
 The recurrence equation of Fibonacci seriescan be represented as tn=tn-1+tn-2

 In general the recurrence equation is a0= tn+tn+1+…..aktn-k=t(n).where k and ai terms are
constant k be the order of recurrence equation.

Types:
*based on order
*based on co efficient

*based on homogeneity
Order of recurrence equation:
*The number of residing terms used for computing the present terms of a sequence is called
the order of recurrence equation.
*the order is difference between the highest be lowest subscript of dependent variable in
recurrence equation.
Example:

Tn-Tn-1-Tn-2=0
The order is n-(n-2)=2
First order-factorial number
Tn=tn-1+1
Second order-general order
F(x)=a0tn-1+a1tn-1+a2tn-2

Homogenous vs non homogenous:
Consider this function f(n)=a0tn-1+……antn-k

If f(n)=0 then it is called as homogenous equation.
Example:
Tn=tn-1+tn-2

If f(n) !=0 then it is called as non homogenous equation.
constant vs variable coefficient:

f(n)=a0t0+a1tn-1+…antn-k

in above equation the ai may be constant on variable.
NON LINEAR RECURRENCE:

It depends mainly on divided & conquer method.
MEHODS FOR SOLVING RECURRENCE EQUATION:
*Guess and verify method
*Substitution method
*Recurrence tree method
*Difference method
*Polynomial reduction
*Generating function
*Table loop up method/master theorem method.
MASTER THEOREM:

Let the time complexity function be the positive and eventually a non- decreasing function
of following form
T(n)
T(n)=at(n/b)+cnk

T(1)=d

Where d, a, k and b are all constants and b≥2, k≥0, a>0, c>0 and d≥0.The solution for the
recurrence equation is given as follows:
Case 1: t(n)€ Θ(nk) if a<bk

Case 2: t(n)€ Θ (nklog n) if a=bk

Case 3: t(n)€ Θ(n logba) if a>bk

Example;
T(n)=8t(n/2)+n2

At(n/2)+cnk

A=8,b2,c=1 and k=2
There conditions are

1. A=bk

2. A>bk

3. A<b2

RECURSION TREE[SUBSTITUTION METHOD AND TREE METHOD]:
PROBLEMS
Substitution method

a) T(n)=T(n-1)+log n
Subs T(n-1)
T(n-1)=T(n-2)+log(n-10
T(n)=[T(n-3)+log (n-2)+log(n-1)]+log n
.
.
.
T(n-k)+log(n-(k-1))+log(n=-(k-2))+log(n-(k-3))+log n
Let n-k=1
K=n
1+log 1+log 2+log 3+…+log n
1+log(n!)
1+log nn

T(n)=O(n log n)

Tree method
T(n)

Log n T(n-1)

Log(n-1) T(n-2)

Log(n-2) T(n-3)
.
.
.

T(2)

Log 2 T(1)

Log 1 T(0)
Log n+log (n-1)+…..log2+log 1
Log[n(n+1)….2*1]
Log n!
O(n log n)=T(n)

2)T(n)={1 ,n=1;
2T(n/2) ,n>1

Solution:
Substitution method
Subs T(n/2)

T(n)=2(2T(n/22)+n/2)+n
T(n)=22T(n/22)+n+n
Subs T(n/22)
T(n)=22[2T(n/22)+n/22]+2n

23T(n/23)+3n
.
.

T(n)=2kT(n/2k)+kn
Assume T(n/2k)=T(1)
n/2k=1
n=2k

k=log n
T(n)=2kT(1)+kn
n*1+n log n
T(n)=O(n log n)
Tree method

N
n/2 n/2

n/22 n/22 n/22 n/22

n/23 n/23 n/23 n/23 n/23 n/23 n/23 n/23

. .

. .

. .
n/2k n/2k

assume n/2k=1
n-2k=k
k=log n

UNIT-2

FUNDAMENTAL ALGORITHMIC STRATEGIES

Brute Force Approach

This is approach is a direct and straight forward techniuqe of a problem
solving in which all the possible solutio of a given problem are enumerated.We solve a
many problems in life using Brute force Approach.

EXAMPLES:

1.Exploring all the park to a nearby market to find the shortest path.

2.Arranging book in a reach using all possibilities to optimize the book rack

3.Suitcase password checking.

ADVANTAGE:

• This is the directed way to find the correct solution by listing all the possible
solution of a problem.

• Brute force Approach is ideal for solving smaller and similar problem.It can
serve as a comparison bench mark.

• It is a generic method because it is not linked to any specific domain of
problem.

DISADVANTAGE:

• Brute force algorithm are slow.

• Brute force method is inefficient.

• This method depend on the computing power of computer system for
solving problem on a good algorithm design.

• Brute force algorithm are not creative compared to algorithm that are
constructed using some other design methods.

Greedy Approach

The aim of optimization problem is to find a but solution from all
feasible solution.Optimization method are used in stages.At every stage a
decision are choice in made this decision are locally optimal
solution.Finally,the global optimal solution by combining locally optimal
solution (i.e it will start with empty set)

COMPONENTS OF GREEDY ALGORITHM:

• Objective funtion

• Generating multiple candidate solution

• Selection procedure

• Feusibility check

• Solution check

1.OBJECTIVE FUNCTION:

• It should be either maximized or minimized based on the given problem.

2.GENERATING MULTIPLE CANDIDATE SOLUTION:

• A Greedy problem may have n inputs or candidate solution.All possible
solution may not be optimal solution.Hence it has to be check whether the
candidate solution fulfill the constraints if so they are selected as a possible
solution.

3.SELECTION PROCEDURE:

• A solution procedure must exists for a greedy algorihm to choose the next
algorithm.Selection must be done based on some greedy criteria.

4.FEUSIBLITY CHECK:

• It determine the selected item is feasible as per the constraints.

5.SOLUTION CHECK:

• This check whether the partial solution together construct a global solution
for the given problem and if so solution is return.

ALGORITHM:

%%Input:ArrayA[…….n]

%%Output:Solution of a problem

Solution set=NULL

While(solution is not complete)

do

Select a best candidate solution X % Selection procedure

If X is a feasible solution then

%%Feasible if

%%Constraints are satisfied

Add the solution ‘X’ to the solution set

End if

%%Check if the solution of the given problem is obtained if(solution obtained)then %%
Solution check return solution set

End if

End white

End

DYNAMIC PROGRAMMING

Dynamic proramming is useful for solving the multistage optimization.A problem is
divide and problem into sub problem and establish the accursing problem.A sub problem trait
represent the all part of the original problem which is solved for obtaining the optimal
solution.This process of enlargement repeated till the age of the sub problem numbers the whole
original problem that is solution for the whole problem is obtained by combining of the optimal
solution of the subproblem.

COMPONENTS OF DYNAMIC PROGRAMMING:

• Stages

• State

• Decision

• Policy

DECISION:

In every stage there can be multiple decision out of which the best solution will be taken.That is
decision taken at every stage should be called stage variable.

STATE:

A state indicate the sub problem which the decision needs to be taken.The variable that are used
to taken on decision at every stage.That are called state variable.

POLICY:

A policy is a rule that determined the decision at each stage.A policy is called optimal policy if it
is globally optimal.This is called Bellman’s principal of optimality.

Branch and bound technique

Branch and Bound technique uses the state space tree fo solving the problem.It is used for
solving the optimisationproblem.So in this technique we have two steps used to solve the
problem.

1.Branching

2.Bounding

It is the first step in which involves division of a given problem into two or more
subproblem.The subproblems are similar to the original problem but smaller in sizethe operation
that are applied for the original problem are applied to the sub problemAssume that f(x) is the
function sub problem and S is the state space tree that has all solving.Hence it is set S is called
teasibleregion.Hence set can be divide into k region such that the union of all Si use back Si

The division of staete space based on the constraints associated with the given
problem.Thesecod step is called the boundig step which helps in limiting the growth of the state
space.

BACKTRACKING

Backtracking is the systematic method for seraching one or more solution for a given
problem.Its is a refind brute force approach used for solving problem.It can reaffctively solve
multidecision problem where the final solution is visualized as set of divisions/choices.The
execution of decision/choices leads another set of decision.This decision can be followed till one
encounters a successful solution.It solves three kinds problem

1.Enumeration problem

2.Decision problem

3.Optimisation problem

In back tracking the constraints of the given problem is given by the bounding
function.Back tracking process defines a solution vector as n tuple vector for the given problem
where n is the number of components of solution vector and each excite represents a partial
solution.This partial solution components are generated based on the concepts of constraints.In
backtracking two types of constraints they are:

1.Implicit

2.Explicit

1.IMPLICIT:

• Implicit constarints are rules that limit the processing of solution vector that
maximize or satisy the craterianfunction.Thecarterian function is called a
Bounding/Validity promising function.

2.EXPLICIT:

• Explicit constraints are rules that resctrict the components of the solution vector
Xi form chosing specific value from a set S.

Knapsack problem

The kanpsack problem has knapsack of capacity K there are n different items each of
which is associated with a weight Wi and profit Pi.

The objective of this problem is to load a knapack with as many as item as possible
subjected to the capacity of the knapsack to get the maximum profit.

TYPES OF KNAPSACK PROBLEM:

1.Fractional knapsack problem

2.Integer knapsack problem

ALGORITHM:

i%%Input i times with profit

%%Output:Optimal packing order of itmes stored in solution vector

Begin

%%Intialize the solution vector

For i<=1 to n do

x(i):=0.0;

End for

Load=0 %%Intialise weight of knapsack i

i=1 %%start with the first size

while((load<w)and (i<=n))do

if((wi+load)<=w)then

load=load+wi; %%load item fully

x(i)=1; %%mark in the solution vector that the item is loaded fully.

Else

r=w=load %%compute the space left out

load=load+r/wi %%fit knapsack with fraction of items

x(i)=r/w(i) %%record the amountof items in solution vector

end if

end while

return(x) %%Return vector solution

End

KNAPSACK PROBLEM USING GREEDY APPROACH
1)
Items 1 2 3
weight 14 18 10
profit 24 20 16

M=0
Solution:
p/w 1.7 1.1 1.6

N=3,m=20
X=(x1,x2,x3)
X1=20-14=6
X3=6/10
X=(1,0,6/10)
Total weight=∑3

i=1xiwi

=x1w1+x2w2+x3w3

=14*1 + 0*18 +6/10*10

=14+0+6
Total weight=20
Total profit=∑n

i=1xipi

=x1p1+x2p2+x3p3

=1*24 + 0*20 + 6/10*16
=24+9.6
Total profit=33.6
Knapsack problem using dynamic programming:
items 1 2 3
weight 1 2 4
value 1 6 4
M=3
Solution:
p w 0 1 2 3
- - 0 0 0 0 0
1 1 1 0 1 1 1
6 2 2 0 1 6 7
4 4 3 0 1 6 -

V(I,w)=max{v[i-1,w],v[i-1,w-w(i)]+pi}
V[1,1]=max{v[0,1],v[0,0]+1}
=max{0,1}
V[1,1]=1
V[1,2]=max{v[0,2],v[0,1]+1}
=max{0,1}
V[1,2]=1
V[1,3]=max{v[0,3],v[0,2]+1}
=max{0,1}
V[1,3]=1
V[2,1]=max{v[1,1],v[1,-1]+6}
=max{1,doesnot exists}
V[2,1]=1
V[2,2]=max{v[1,2],v[1,0]+6}
=max{1,0+6}
V[2,2]=6
V[2,3]=max{v[1,3],v[1,1]+6}
=max{1,1+6}
V[2,3]=7
V[3,1]=max{v[2,1],v[2,-3]+4}
=max{1,doesnot exists}
V[3,1]=1

V[3,2]=max{v[2,2],v[2,-2]+4}
=max{6,doesnot exists}
V[3,2]=6
V[3,3]=max{v[2,3],v[2,-1]+4}
=max{7,doesnot exists}
V[3,3]=7
When i=3,j=3
K[3][3]==k[2][3]
7==7 true (0)
When i=2,j=3
K[2][3]=k[1][3]
7==1 false
When i=1,j=1
K[1][1]=k[0][1]
1==0 false
X={1,1,0}

TRAVELLING SALESPERSON PROBLEM:

The travelling salesman problem is a graph computational problem where the salesman
needs to visit all cities (represented using nodes in a graph) in a list just once and the distances
(represented using edges in the graph) between all these cities are known. The solution that is
needed to be found for this problem is the shortest possible route in which the salesman visits all
the cities and returns to the origin city.

ALGORITHM:

• Travelling salesman problem takes a graph G {V, E} as an input and declare another graph
as the output (say G’) which will record the path the salesman is going to take from one
node to another.

• The algorithm begins by sorting all the edges in the input graph G from the least distance to
the largest distance.

• The first edge selected is the edge with least distance, and one of the two vertices (say A
and B) being the origin node (say A).

• Then among the adjacent edges of the node other than the origin node (B), find the least
cost edge and add it onto the output graph.

• Continue the process with further nodes making sure there are no cycles in the output graph
and the path reaches back to the origin node A.

• However, if the origin is mentioned in the given problem, then the solution must always
start from that node only. Let us look at some example problems to understand this better.

TRAVELLING SALES PERSON USING DYNAIMMIC PROGRAMMING
APPROACH:
a)

1 2 3 4
1 0 5 3 10
2 2 0 5 7
3 4 3 0 8
4 6 5 9 0

Solution:
When |s|=Φ
Cost(2, Φ)=d[2,1]=2
Cost(3, Φ)=d[3,1]=4
Cost(4, Φ)=d[4,1]=6
When |s|=1
Cost(2,{3})=d[2,3]+cost(3, Φ)=5+4=9
Cost(2,{4})=d[2,4]+cost(4, Φ)=7+6=13
Cost(3,{2})=d[3,2]+cost(2, Φ)=3+2=5
Cost(3,{4})=d[3,4]+cost(4, Φ)=8+6=14
Cost(4,{2})=d[4,2]+cost(2, Φ)=5+2=7
Cost(4,{3})=d[4,3]+cost(3, Φ)=9+4=13
When |s|=2
Cost(2,{3,4})=min{d[2,3]+cost(3,{4}),d[2,4]cost(4,{3})}
=min{5+14,7+13}
=min{19,20}
=19
Cost(3,{2,4})=min{d[3,2]+cost(2,{4}),d[3,4]+cost(4,{2})}
=min{3+13,8+7}
=min{16,15}=15
Cost(4,{2,3})=min{d[4,2]+cost(2,{3}),d[4,3]+cost(3,{2})}
=min{5+9,9+5}
=min{14,14}
=14
When |s|=3
Cost(1,{2,3,4})=min{d[1,2]+cost[2,{3,4}],d[1,3]+cost[3,{2,4}],d[1,4]+cost[4,{2,3}]}
=min{5+19,3+15,10+14}
=min{24,18,24}
=18
1—3—4—2—1

TRAVELLING SALES PERSON PROBLEM USING BRANCH AND
BOUND TECHNIQUE:

1 2 3
1 ∞ 4 2
2 3 ∞ 4
3 1 8 ∞

SOLUTION:
Row reduction
∞ 4 2 2
3 ∞ 4 3 1
1 8 ∞ 1 2 3

6

∞ 2 0 ∞ 0 0
0 ∞ 1 0 ∞ 1
0 7 ∞ 0 5 ∞
0 2 9 =2

total cost DF reduction
6+2=8
Find cost from(1 to 2)
Make 1st row and 2nd column as infinity and (2,1) as infinity

1 2 3
1 ∞ ∞ ∞
2 ∞ ∞ 1
3 0 ∞ ∞

1

C(1,2)+r+r^
=0+8+1
=9
Find cost from (1 to 3)
Make 1st row and 3rd column as infinity and (3,1) as infinity.

1 2 3
1 ∞ ∞ ∞
2 0 ∞ ∞
3 ∞ 5 ∞

1
2 3

5 9 13

=c(1,3)+r+r^
=0+8+5=13

Find the cost from (2 to 3)
Make 2nd row and 3rd column as infinity and (3,2) as infinity.

1 2 3
1 ∞ 0 ∞
2 ∞ ∞ ∞
3 0 ∞ ∞

=c(2,3)+r+r^
=1+9+0=10 9 13

1—2—3—1
10

N Queen Problem

Given an integer n, the task is to find the solution to the n-queens problem, where n queens are placed
on an n*n chessboard such that no two queens can attack each other.

What is N Queen Problem?

In N-Queen problem, we are given an NxN chessboard and we have to place N number of queens on the
board in such a way that no two queens attack each other. A queen will attack another queen if it is
placed in horizontal, vertical or diagonal points in its way. The most popular approach for solving the N
Queen puzzle is Backtracking.

Input Output Scenario

Suppose the given chessboard is of size 4x4 and we have to arrange exactly 4 queens in it. The solution
arrangement is shown in the figure below −

1

2 3

4

1

2 3

3

1

The final solution matrix will be −

0 0 1 0

1 0 0 0

0 0 0 1

0 1 0 0

Backtracking Approach to solve N Queens Problem

In the naive method to solve n queen problem, the algorithm generates all possible solutions. Then, it
explores all of the solutions one by one. If a generated solution satisfies the constraint of the problem, it
prints that solution.

Follow the below steps to solve n queen problem using the backtracking approach −

 Place the first queen in the top-left cell of the chessboard.

 After placing a queen in the first cell, mark the position as a part of the solution and then
recursively check if this will lead to a solution.

 Now, if placing the queen doesn’t lead to a solution. Then go to the first step and place queens
in other cells. Repeat until all cells are tried.

 If placing queen returns a lead to solution return TRUE.

 If all queens are placed return TRUE.

 If all rows are tried and no solution is found, return FALSE.

UNIT III

GRAPH AND TREE ALGORITHMS

Traversal Algorithms :

Traversal algorithms are methods used to visit and explore all the nodes (vertices) in a
data structure such as a graph or a tree. These algorithms determine the order in which the nodes
are visited and processed. The two most common traversal algorithms are:

• Depth First Search [DFS]

• Breadth First Search [BFS]

Traversal algorithms are fundamental in graph theory and are essential for various
applications such as searching, pathfinding, and data analysis in computer science and other
fields. The choice of traversal algorithm depends on the specific problem and the characteristics
of the data structure being traversed.

Depth First Search [DFS] :

Depth-First Search (DFS) is a graph traversal algorithm that explores a graph or a tree
data structure by going as deep as possible along each branch before backtracking. It starts at the
root node and keeps exploring as deep as it can along a particular path until it reaches a leaf node
or a node with no unvisited neighbors.

When DFS reaches a dead-end, it backtracks to the most recent node with unexplored
branches and continues the exploration from there. This process continues until all nodes have
been visited.

DFS can be implemented using recursion or an explicit stack data structure. It is useful
for tasks like searching for a path between two nodes, exploring all possible paths in a graph, and
finding connected components in a graph

Example :

We use an undirected graph with 5 vertices

Undirected graph with 5 vertices

We start from vertex 0, the DFS algorithm starts by putting it in the Visited list and putting all its
adjacent vertices in the stack.

Visit
the element and put it in the visited list

Next, we visit the element at the top of stack i.e. 1 and go to its adjacent nodes. Since 0 has
already been visited, we visit 2 instead.

Visit the element at the top of stack

Vertex 2 has an unvisited adjacent vertex in 4, so we add that to the top of the stack and visit it.

Vertex 2 has an unvisited adjacent vertex in 4, so we add that to the top of the stack and visit it.

Vertex 2 has an unvisited adjacent vertex in 4, so we add that to the top of the stack and visit it.

After we visit the last element 3, it doesn't have any unvisited adjacent nodes, so we have
completed the Depth First Traversal of the graph.

After
we visit the last element 3, it doesn't have any unvisited adjacent nodes, so we have completed
the Depth First Traversal of the graph.

Breadth First Search [BFS] :

Breadth-First Search (BFS) is a way to explore a place step by step, starting from the
center and moving outwards level by level. It's like searching for something by looking at nearby
things first before checking farther ones.

BFS is often used to find the shortest path from one point to another in a map or a graph.
It guarantees that you will find the shortest route by exploring the closest options before
checking the ones that are farther away. It helps you search efficiently by exploring nearby areas
before moving on to more distant ones.

Example:

Step 1: Initially queue and visited arrays are empty.

Queue and visited arrays are empty initially.

Step 2: Push node 0 into queue and mark it visited.

Push node 0 into queue and mark it visited.

Step 3: Remove node 0 from the front of queue and visit the unvisited neighbours and push them
into queue.

Remove node 0 from the front of queue and visited the unvisited neighbours and push into
queue.

Step 4: Remove node 1 from the front of queue and visit the unvisited neighbours and push them
into queue.

Remove node 1 from the front of queue and visited the unvisited neighbours and push

Step 5: Remove node 2 from the front of queue and visit the unvisited neighbours and push them
into queue.

Remove node 2 from the front of queue and visit the unvisited neighbours and push them into
queue.

Step 6: Remove node 3 from the front of queue and visit the unvisited neighbours and push them
into queue.
As we can see that every neighbours of node 3 is visited, so move to the next node that are in the
front of the queue.

Remove node 3 from the front of queue and visit the unvisited neighbours and push them into
queue.

Step 7: Remove node 4 from the front of queue and visit the unvisited neighbours and push them
into queue.
As we can see that every neighbours of node 4 are visited, so move to the next node that is in the
front of the queue.

Remove node 4 from the front of queue and visit the unvisited neighbours and push them into
queue.

Now, Queue becomes empty, So, terminate these process of iteration.

Shortest Path Algorithm :

The shortest path algorithm is a set of computational methods used to find the shortest
path between two nodes in a graph or a network. The "shortest path" refers to the path with the
minimum sum of edge weights (or costs) between the source node (starting point) and the
destination node (target).

The concept of the shortest path is often used in various real-world applications, such as
finding the shortest route on a map, optimizing transportation systems, routing data packets in
computer networks, and solving resource allocation problems. Well-known algorithms for
finding the shortest path is Dijkstra's algorithm.

Dijkstra's Algorithm:

Dijkstra's algorithm is a greedy algorithm that works efficiently for finding the shortest
path from a single source node to all other nodes in a graph with non-negative edge weights. It
maintains a priority queue to keep track of the nodes to be visited in increasing order of their
distance from the source node. The algorithm iteratively selects the node with the shortest
distance and explores its neighbors, updating the distance to the neighbors if a shorter path is
found. Dijkstra's algorithm guarantees that the shortest path to each node is found in a non-
negative weighted graph.

Algorithm:

Step 1:Take a directed graph and form a distance matrix, as follows:

Step 2: Identify the source node s. This is the starting node.

Step 3: For all other vertices j ≠ s; calculate the new distance. Initially, assign the source s a
permanent label. This means that the node s has already been selected and its distance from the
source is known.

Step 4: Choose the remaining vertices. Find the distance of only those vertices that are known to
s from the source. This is what we call as a special path. This requirement may update the
distance value. There are only two possibilities: The existing distance may itself be minimum. In
that case, it is left alone. On the other hand, if the new distance is smaller than the old distance,
then it is updated. Such a process of improving the result by path update is known as relaxation.
The minimum vertex is then added to the set of vertices that are known to the source s.

Step 5: Continue Step 4 until all the vertices get a permanent label.

Step 6: Generate paths from the source node s.

The following is the formal algorithm for this method:

Algorithm SSSP(G) :

Example:

Answer:

Transitive Closure :

Given a directed graph G = (V, E), the transitive closure of G is a new graph G' = (V, E')
where there is an edge (u, v) in E' if and only if there exists a directed path from vertex u to
vertex v in G.

Transitive closure is a fundamental concept in graph theory and is used to determine the
reachability between pairs of vertices in a directed graph. It helps identify all possible paths,
including indirect paths, between vertices.

The informal algorithm for the Warshall algorithm is given as follows:

Step 1: Read weighted graph G = <V , E >.

Step 2: Initialize P [i ,j] with the adjacency matrix of G.

Step 3: Recursively compute for k = 1, 2, ..., n.

3a:Pij
k = Pij

(k-1)˅(Pik
(k-1)˄Pkj

(k-1))

Step 4: Return path matrix P.

Step 5: End.

The formal algorithm for the Warshall algorithm can be written as follows:

Algorithm Warshall (G, A):

Example:

For this graph R(0) will be looked like this:

Here R(0) shows the adjacency matrix. In R(0), we can see the existence of a path, which has no
intermediate vertices. We will get R(1) with the help of a boxed row and column in R(0).

In R(1), we can see the existence of a path, which has intermediate vertices. The number of the
vertices is not greater than 1, which means just a vertex. It contains a new path from d to b. We
will get R(2) with the help of a boxed row and column in R(1).

In R(2), we can see the existence of a path, which has intermediate vertices. The number of the
vertices is not greater than 2, which means a and b. It contains two new paths. We will get R(3)

with the help of a boxed row and column in R(2).

In R(3), we can see the existence of a path, which has intermediate vertices. The number of the
vertices is not greater than 3, which means a, b and c. It does not contain any new paths. We will

get R(4) with the help of a boxed row and column in R(3).

In R(4), we can see the existence of a path, which has intermediate vertices. The number of the
vertices is not greater than 4, which means a, b, c and d. It contains five new paths.

Minimum Spanning Tree:

Minimum Spanning Tree (MST) is a crucial concept in graph theory and optimization. It
involves finding the smallest tree that connects all vertices in a graph while minimizing the total
edge weight.

Applications:

• Network design

• Transportation

• Communication, etc.

Prim's Algorithm:

Algorithm Overview:

• Start with an arbitrary vertex and repeatedly add the edge with the lowest weight
connecting a vertex in the MST to a vertex outside the MST.

• Maintain a set of vertices in the MST and a set of vertices outside the MST.

• Greedy approach: Always choose the edge with the minimum weight to expand the MST.

Example:

Step 1 - First, we have to choose a vertex from the above graph. Let's choose B.

Step 2 - Now, we have to choose and add the shortest edge from vertex B. There are two edges
from vertex B that are B to C with weight 10 and edge B to D with weight 4. Among the edges,
the edge BD has the minimum weight. So, add it to the MST.

Step 3 - Now, again, choose the edge with the minimum weight among all the other edges. In
this case, the edges DE and CD are such edges. Add them to MST and explore the adjacent of C,
i.e., E and A. So, select the edge DE and add it to the MST.

Step 4 - Now, select the edge CD, and add it to the MST.

Step 5 - Now, choose the edge CA. Here, we cannot select the edge CE as it would create a cycle
to the graph. So, choose the edge CA and add it to the MST.

So, the graph produced in step 5 is the minimum spanning tree of the given graph. The cost of
the MST is given below -

Cost of MST = 4 + 2 + 1 + 3 = 10

Kruskal's Algorithm:

Algorithm Overview:

• Sort all edges by weight in non-decreasing order.

• Start with an empty set of edges and repeatedly add the next edge in the sorted order if it
does not create a cycle.

• Utilizes the disjoint-set (or union-find) data structure to keep track of connected
components.

• Greedy approach: Always choose the smallest edge that doesn't form a cycle.

Example:

The weight of the edges of the above graph is given in the below table

Edge AB AC AD AE BC CD DE
Weight 1 7 10 5 3 4 2

Now, sort the edges given above in the ascending order of their weights.

Edge AB DE BC CD AE AC AD
Weight 1 2 3 4 5 7 10

Now, let's start constructing the minimum spanning tree.

Step 1 - First, add the edge AB with weight 1 to the MST.

Step 2 - Add the edge DE with weight 2 to the MST as it is not creating the cycle.

Step 3 - Add the edge BC with weight 3 to the MST, as it is not creating any cycle or loop.

Step 4 - Now, pick the edge CD with weight 4 to the MST, as it is not forming the cycle

Step 5 - After that, pick the edge AE with weight 5. Including this edge will create the cycle, so
discard it.

Step 6 - Pick the edge AC with weight 7. Including this edge will create the cycle, so discard it.

Step 7 - Pick the edge AD with weight 10. Including this edge will also create the cycle, so
discard it.

So, the final minimum spanning tree obtained from the given weighted graph by using Kruskal's
algorithm is

The cost of the MST is = AB + DE + BC + CD = 1 + 2 + 3 + 4 = 10

Topological Sorting:
Given a directed graph G = (V, E), a topological ordering is a linear ordering of the

vertices in V such that if there is a directed edge (u, v) in E, then vertex u comes before vertex v
in the ordering.

Topological sorting is a crucial concept in graph theory and algorithms, especially in
directed acyclic graphs (DAGs). It provides a linear ordering of the vertices in such a way that

for every directed edge (u, v), vertex u appears before vertex v in the ordering. Topological
sorting has applications in scheduling, task sequencing, and dependency resolution.

Algorithm:

Step 1: Initialize a queue Q by traversing the graph and identify the next vertex u with no
incoming edges. If there are many such vertices, then any node or vertex can be taken for further
consideration. If there is none, then stop as topological sort cannot be performed.

Step 2: Pick the vertex u.

Step 3: Delete the vertex u that has no incoming edges along with all the edges.

Step 4: Repeat Steps 1-3 till all the vertices of the given graph are processed.

C

Example:

B

D

E

F

A

1.The adjacency matrix of the graph shown in the above figure is shown in the table.

Adjacency matrix of the graph shown in Figure

A B C D E F
A 0 1 0 0 0 0
B 0 0 1 1 0 0
C 0 0 0 1 0 0
D 0 0 0 0 1 0
E 0 0 0 0 0 1
F 0 0 0 0 0 0

Let us assume that m= 1. It can be observed that all the elements in the first column are zero.
Therefore, A is assigned a number 1. Then delete the first column and first row, this yields a new
adjacency matrix as shown in Table

Adjacency matrix after removing A node

B C D E F
B 0 1 1 0 0
C 0 0 1 0 0
D 0 0 0 1 0
E 0 0 0 0 1
F 0 0 0 0 0

2. Delete B. Assign it the number 2 (i.e., m = m + 1). Delete the second row along with column.
This yields a new adjacency matrix as shown in Table.

Adjacency matrix after removing B node

C D E F
C 0 1 0 0
D 0 0 1 0
E 0 0 0 1
F 0 0 0 0

3. Delete C. Assign it the number 3 (i.e., m = m + 1). Delete its column along with its row. This
yields a new adjacency matrix as shown in Table.

Adjacency matrix after removing C node

D E F
D 0 1 0
E 0 0 1
F 0 0 0

4. Delete D. Assign it the number 4 (i.e., m = m + 1). Delete its column along with its row. This
yields a new adjacency matrix as shown in Table.

Adjacency matrix after removing D node

E F
E 0 1
F 0 0

5. Delete E. Assign it the number 5 (i.e., m=m+1). Deleting the column with its row finally
yields the node F. The resulting linear ordering of the vertices is shown in Figure. The number of
vertices assigned by the topological sort is given as a subscript.

F

E

D

C

B

A

Final linear ordering

UNIT-IV

BASICS OF COMPUTATIONAL COMPLEXITY

COMPUTATIONALCOMPLEXITY:
• Thealgorithmiccomplexitytheorydealswiththeanalysisofalgorithmsintermsofcomput

ational resources such astimeorspace.
• Theobjectiveofcomplexitytheoryisto decide whetheragivenalgorithm is

efficientornot.
• Computationalcomplexitydealswiththesolvabilityofagivenproblem.

CATEGORIZATIONOFALGORITHMS:
• The rearetwocategoriesofalgorithms,

• PolynomialAlgorithm.
• ExponentialAlgorithm

• POLYNOMIALALGORITHM:
• Lettherebeapolynomialp(n)ofdegreen.

• Analgorithmiscalledapolynomialalgorithmiftheupperboundofthealgorithm is
O(p(n)).

• Examplesofthispolynomialalgorithmaresearching,sortingalgorithms,etc….

• EXPONENTIALALGORITHMS:
• Analgorithmiscalledexponentialif itscomplexityisnotpolynomial.

• In other words, algorithms whose complexity is O(n!) or O(2n) are
allexponentialalgorithms.

• Thesealgorithmsareinfeasiblealgorithms,thatisthenproblemscannotbesolved
withinareas onableamountoftime.

• Example forthisalgorithmisTowerofHanoi.

DECISIONPROBLEMSANDTURINGMACHINE:

• The computational complexity theory deals with decision
problemsratherthanoptimizationproblem.

• Inadecisionproblem(orarecognitionproblem)isa problem inwhichtheoutputofthis
problem isrestrictedto ‘yes’or‘no’.

• Anoptimizationproblemhasobjectivefunctionsandconstraints.

• Anysolutionthatsatisfiestheconstraints iscalledafeasiblesolution.

• Anysolutionthatsatisfiestheconstraintsandmaximizesorminimizestheobjectivefunc
tion iscalledanoptimal solution.

• Problems such as the TSP, Knapsack problem, and M-colouring
problemareallexamples of optimizationproblem.

• Conversion of an optimization problem to a decision problem
isimportant,asadecisionproblemsimplifiestheissuesofcomputabilitywithoutalteringt
heessenceiftheproblem.

• Toprocessadecisionproblem,onerequiresacomputingmodel,calledaTuringMachine.
• ThiswasdesignedbyAllenTuringandwasproposedin1936.

ThecomponentsofaTuringMachine are:
• Memory:

• A Turing Machine has infinite memory in the form of an infinitetape.
Atapeis dividedinto asetofcells.

• Everycellhasasymbol,called atapesymbol.

• Tapesymbolsarederivedfromthegivenalphabet{0,1}fordecision
problems.

• Read/Writehead:
• Theread/write headisalsoknownasatapehead.

• Thisisapointerthatpoints tothebeginningofatape.

• States:
• ATuringmachinehasmanystates,and,atanypointoftime,itcanbinanyoneofth

estates.
• Ofallthestatesthe following threeareimportant.

• Startstate:
• The initialstateiscalledq0.

• Atthetime ofinitialization,themachineis inthe startstate.

• qacceptstate:
• Thisiscalledan‘acceptingstate’.

• ATuringmachineisinthisstateforadecisionproblemwhoseansweris‘yes’.
• qreject state:

• Thisiscalledan‘rejectingstate’.

• ATuringmachineis inthestatefora decisionproblemwhoseansweris‘no’.
• Program

• ThisisanimportantcomponentofaTuringmachine.ATuringmachine reads
an input character under the read/write head,themachine
movestoanewstate.Thisis calledatransition.

• Transitionsbasedonthecurrentstateandthe newcharactersare well defined
for a Turing machine and are listed in a tableiscalleda
‘Transitiontable’.

• Asaresultofatransition,thefollowingactionsarepossible:

• The read/write head moves by one square(or cell)
ineithertherightortheleftdirection.

• Theread/writeheadcanwriteacharacterwherethetapeheadrests.
• The machine can move to a new state that can be

aspecialstatesuchasanacceptingstateorarejectingstate.
• TheseareallimportantcomponentsofaTuringmachine.

• EncodingandLanguages:
• ATuringmachinetakesaninputdecisionproblemasanencodedstring

of1s and0s.

COMPLEXITYCLASS:

ComplexityclassescanbedividedintoPclassandNP.

ClassP

All the problems(decision or optimization problems) for which polynomial timealgorithms
exist are said to belong to the complexity class P. P stands forpolynomialtime.
Examples:searching,sortingandselectionproblems.

ClassNP

>> These problems are said to be intractable,as they do not any efficientsolutions.
>> NP stands for non-determinstic polynomial and refers to problems that aresolvablein
polynomialtime.

NPproblemsareoftwtypes-NP-hardandNP-complete.

NP-hardproblems

>>Itis notpossibleto solvealltheproblems.
>> If all problems in NP are polynomial time reducible to it,even though it maynotbein
NPitself.

NP-completeproblems

>> If a polynomial time algorithm exists for any of these problems,all
problemsinNPwouldbepolynomialtimesolvable.

DETERMINSTICALGORITHM:

>> A deterministic algorithm is one whose behavior is completely determinedbyits
inputsand thesequenceofits instructions.

>>Foraparticularinput,thecomputerwillgivealwaysthesameoutput.

>>Cansolvetheprobleminpolynomialtime.

>>Operationareuniquelydefined.

>>Likelinearsearchandbinarysearch.

>>Deterministicalgorithmsusuallyhaveawell-definedworst-casetimecomplexity.

>>Deterministicalgorithmsareentirelypredictableandalwaysproducethesameoutputforthe
sameinput.

>>Deterministicalgorithmsusuallyprovideprecisesolutionstoproblems.

>>Deterministicalgorithmsarecommonlyusedinapplicationswhereprecisioniscritical,s
uchasincryptography,numericalanalysis,andcomputergraphics.

>>Examplesofdeterministicalgorithmsincludesortingalgorithmslikebubblesort,insertionsort,
andselectionsort,aswellasmanynumericalalgorithms.

NON-DETERMINSTICALGORITHM:

>>Anon-
deterministicalgorithmisoneinwhichtheoutcomecannotbepredictedwithcertainty,eveniftheinputs
areknown.

>>Foraparticularinputthecomputerwillgivedifferentoutputsondifferentexecution.

>>Can’tsolvetheproblem polynomialtime.

>>Cannotdeterminethenextstepofexecutionduetomorethanonepaththealgorithmcantake.

>>Operationarenotuniquelydefined.

>>like0/1knapsackproblem.

>>Timecomplexityofnon-
deterministicalgorithmsisoftendescribedintermsofexpectedrunningtime.

>>Non-deterministicalgorithmsmayproducedifferentoutputsforthesameinput
duetorandomeventsor otherfactors.

>>Non-
deterministicalgorithmsareoftenusedinapplicationswherefindinganexactsolutionisdifficultori
mpractical,suchasinartificialintelligence,machinelearning,andoptimizationproblems.

>>Examplesofnon-
deterministicalgorithmsincludeprobabilisticalgorithmslikeMonteCarlomethods,geneticalgorit
hms,andsimulatedannealing.

NON-DETERMINSTICSTAGES:

Therearetwostages:
• Guessingstage:Itgeneratesanarbitrarystringthatcanbethoughtasacandidatesolution.

• Verificationstage:
>>Inthisstagewetakecandidatesolutionandinstanceoftheproblemastheinput.
>>Itreturnsyesifthecandidaterepresenttheactualsolution(iftheguessingiscorrect).
>>Iftheanswerisnoourguessingiswrong.

REDUCTIONTECHNIQUES:

>>Reductionbytransformandconquermethod.

>>Inthismethod,wesolveadifficultproblembytransformingitintoaknownproblemforwhic
hwehaveanoptimalsolution.

>>Basically,thegoalistofindareducingalgorithmwhosecomplexityisnotdominatedbyt
heresultingreducedalorithms.

UNIT-V
Advanced Topics

APPROXIMATION ALGORITHMS:
• DEFINITION:

An algorithm for problems (mostly NP-Hard or NP-Complete) is an approximate
algorithm if it can give optimal solutions within a certain bound and also if it is possible to
establish the solution guarantee analytically in worst case or an average in general.

The quality of an approximation algorithm is decided by
• Time Complexity analysis
• Comparing the generated feasible solutions with the optimal solutions (‘Goodness Factor’).

Goodness Factor or Goodness of an approximation algorithm relates the solution produced
by the approximation algorithm and the actual optimal solution of the problem. It can be
estimated through metrics. It is preferred to have an absolute performance measures, that is, the
difference between the optimal and approximate solution is bounded by a constant, say k. But it
is difficult to find such an approximation algorithm. Hence, one normally takes the relative
performance.

In relative performance, a ratio of the optimal and approximation solution is obtained.
This is called Accuracy ratio (k).The range of Accuracy ratio is 0-1.
Let us assume that,
A - Approximation Algorithm for given problem Q,
I - Instance of the problem Q,

OPT (I) - Optimal solution of the problem Q,
A (I) - Feasible near optimal solution.

If Q is a minimization problem, then the ratio k=
If Q is a maximization problem, then the accuracy ratio is given as the reciprocal of k so that the

accuracy ratio is the range 0-1.

An approximation algorithm that gives a near optimal solution in polynomial time,
which is at most r times the optimal solution for any instance of the given problem is called r-
approximation algorithm. Here r is called the worst-case ratio or approximation ratio and is
given as follows:

The best value of r for which the inequality holds for all instances of the problem, that
is, r=max I , is called a Performance ratio.

The value of performance ratio ‘r’ is 1 if the problem is of minimization problem and
for maximization problem r1.

• ADVANTAGES :
• Approximation algorithms optimize computer resources such as space and time.

Hence, these algorithms are applicable not only to NP-Hard problems but can also
replace algorithms that utilize more computer resources.

• Approximation algorithms help categorize problems based on their difficulty levels.

• Approximation algorithms are valuable tools for developing and evaluating different
types of heuristics for a given problem.

• DISADVANTAGES :
• Approximation algorithms focus only on the worst-case measures and ignore

heuristics that often work well in practical applications.
• Approximation algorithms are limited to only a certain set of problems and not

applicable to decision problems.

• TYPES :
An optimization problem is characterized by four parameters in approximation problems.

The complexity classes of decision problems are P, NP-complete and NP-hard. These
complexity classes can be extended for optimization problems also. These classes are
called PO, NPO and NP-hard. NPO is a complexity class of optimization problems also.

There are three ways of solving PO, NPO and NP-hard categories of problems:
Exact Algorithms are exponential algorithms that provide exact solutions.
For the given problem. It cannot be practically implemented due to limited computer
resources.
Approximate Algorithms are suitable for solving PO, NPO and NP-hard problems.
These algorithms give approximate solutions and it is possible analytically to establish the
solutions.
Heuristic Algorithms use trial and error methods to provide approximate solutions for
computationally hard problems. The performances of the heuristic algorithms are often
verified by computer experiments rather than by analytical methods.

• CLASSIFICATION OF APPROXIMATION ALGORITHMS BASED ON
APPROXIMATION RATIO :

Based on approximation ratio r, the approximation algorithm can be classified as follows:
Approximate Algorithms An algorithm A is called an absolute or constant ratio
approximate algorithm if approximate ratio r is a fixed constant. This implies that the
difference between an absolute optimal solution and the solution generated by the
approximation algorithm is always a constant. It also means that approximation algorithm
is independent of the input instance of the problem.
Logarithmic Approximation If r is O (log (I)), where I is the instance of the problem,
then the algorithm is called a logarithmic ratio or logarithmic approximation.
f (n)-approximation An algorithm A is called f (n)-approximation if and only if, for all
instances of size, the approximation is O(). This assumes that the approximate solution A
(I) is greater than Zero.

An algorithm A is called approxiamtion if and
Only if, for all instances of size, the following condition holds:

|A (I)-OPT (I) |≤for all instances I and for >0.
Approximation schemes An approximation algorithm A () is one that accepts two inputs-
input instances and approximation ratio
(Where >0). It approximates the optimal solution within a bound of (1+) called a Scheme.
There are two approximation schemes available
• Polynomial time approximation scheme (PTAS).
• Full time approximation scheme (FPTAS).

VERTEX COVER PROBLEM:

The input for a vertex cover problem is a graph G= (V, E). The aim of the vertex cover
problem is to find a vertex cover such that every edge of G is incident on at least one vertex in
vc.

A vertex is said to be a cover or node cover if the edges of the graph G are incident on it. A
cover is thus a minimum set of vertices which ensures that all the edges of the given graph are
incident on at least one vertex of the set vc. It is to choose a se S of vertices such that all the
edges are covered. In other words, all edges are incident at least one vertex of the vertex cover.
Finding a vertex cover for simple graphs like the preceding example is very easy. However, it is
difficult in larger graphs that involve many vertices. Thus, vertex cover is an NP-hard problem.

The simplest greedy algorithm for finding a vertex cover is to pick an edge e, e {u, v}
arbitrarily, and add one of its end points, say v, to a solution cover c. Then the edge e can be
deleted along with all the edges that are incident to v. The procedure for a greedy vertex cover
can informally be written as follows:

Step 1: Initialize the vertex cover vc as null, that is, vc = {}.

Step 2: While the edge list E is not empty do the following:

2a: Pick an edge e=<u, v> arbitrarily

2b:vc = vc {v}.

2c: Remove e along with all edges u.

2d: End while.

Step 3: Return vc and exit.

The procedure for a greedy vertex cover can formally be written as follows:

Algorithm greedy _ vertex-cover (G)

%% Input: G=<V, E>, E is the edge list and V the vertex list
%% Output: Cover for the given graph
Begin
Vc= %% Initialize vertex cover as null
E’=E
while (E’) do

pick an edge e=(u, v)E’ arbitrarily
%% for weighted set cover this should be minimum

vc=vc {v}
%% Update all edge list E’
E’=E’-{all edges that are adjacent to u or v}

End while
Return vc

End

It can be observed that the algorithm keeps picking edges (u, v) and add one end of the edge,
that is, v to the vertex cover. Then, the edge list is updated. This process is continued till the
algorithm returns the vertex cover.

A better algorithm can be obtained as follows: Instead of outputting only one vertex u, both the
end points of the edge can be added onto the vertex. The modified vertex cover approximation
algorithm procedure can be written as follows:

Step 1: Initialize the vertex cover vc as null, that is, vc = {}.

Step 2: While the edge list E is not empty do the following:

2a: Pick an edge e= {u, v} arbitrarily.

2b:vc = vc {u, v}.

2c: Delete e and all edges that has u and v end points.

Step 3: Return vertex cover vc.

The formal algorithm for vertex cover is given as follows:

Algorithm mod_ greedy _ vertex-cover (G)

%% Input: G=<V, E>, E is the edge list and V the vertex list
%% Output: Vertex Cover
Begin
vc= %% Initialize vertex cover as null
E’=E
while (E’) do

pick an edge e=(u, v)E’ arbitrarily
%% for weighted set cover this should be minimum

vc=vc {u, v}
%% Update all edges
E’=E’-{all edges that are adjacent to either u or v}

End while
Return vc

End

Complexity Analysis of vertex cover:

A vertex cover covers every edge in matching M and includes at least one end point. In
matching, two edges share the same point. Therefore, it can be proved that OPT≥|M|. It has been
proved that the accuracy ratio is 2, as the arbitrary picking of an edge amounts to maximal
matching M. The minimal covering is |M|. However, the vertex cover algorithm returns a vertex
cover with at least vertices of size 2*|M|. Therefore, one can conclude that the returned vertex
cover is ≥ 2 x OPT. Therefore, it can be observed that the accuracy ratio of vertex cover is 2.
Thus, the complexity analysis of vertex cover problem is 2 OPT.

RANDOMIZED ALGORITHMS:
• DEFINITION:
The input for a randomized algorithm are similar to those of deterministic algorithms, along with
the sequence of random bits that can be used by the algorithm for making random choices. In
other words, a randomized algorithm is one whose behavior depends on the inputs, similar to a
deterministic algorithm, and the random choices are made as part of its logic. As a result, the
algorithm gives different outputs even for the same input. In other words, the algorithm exhibits
randomness; hence its run-time is often explained in terms of a random variable.

• ADVANTAGES :
• Randomized algorithm are known for their simplicity. Any deterministic algorithm

can easily be converted to a randomized algorithm. These algorithms are very
simple to understand and implement.

• Randomized algorithms are very efficient. They utilize little execution time and
space compared to any deterministic algorithms.

• Randomized algorithms exhibit superior asymptotic bounds compared to
deterministic algorithms. In other words, the algorithm complexity of randomized
algorithms is better than that of most of the deterministic algorithms.

• DISADVANTAGES :
• Reliability is an important issue in many critical applications, as not all

randomized algorithms give correct answers always. In addition, many randomized

algorithms may not terminate. Hence, reliability is an important concern that needs
to be dealt with.

• The quality of randomized algorithms is dependent on the quality of the random
number generator used as part of the algorithm.

A randomized algorithm does not use a single design principle. Instead one should view
randomized algorithms as those designed using a set of principles. Some of the design principles
are listed below.
Concept of witness this principle involves the question of checking whether a given input
possesses a property X or not. It is established by finding a certain object called a witness or a
certificate. The witness is identified to prove the fact that the input indeed has the desired
property X. By conducting a fewer trials it can be found out whether the property was really
present. The presence of a witness is a strong proof of the property X. Otherwise one should
conclude that the input does not have such a property X based on the absence of witnesses.
Fingerprinting Fingerprint is a shorter message that is representative of a larger object.
Fingerprinting is a technique wherein we get a comparison of two large objects A and B only by
comparing their respective short fingerprints. If two fingerprints does not match, then the objects
A and B are different. However, if the fingerprints match then there is a strong circumstantial
evidence that both objects are the same.
Checking identitiesLet us assume that an algebraic expression is given, and the problem is to
check whether the expression evaluates to zero or not. The principle of checking identities is to
plug the random variables of a given algebraic equation and check whether the expression
evaluates to zero. If it is not zero, then the given expression is not an identity. Otherwise, there is
a strong circumstantial evidence that the expression is identically zero.
Random sampling and ordering Performance of an algorithm sometimes improves by
randomizing the input distribution or order. It can be observed that for certain ordering of the
inputs the performance of the algorithm can be higher or just acceptable. Here, randomization
leads to randomized ordering, partitioning and sampling.
Foiling the adversary Randomized algorithm can be viewed as a game between a person
and an adversary that is a person proposing an algorithm and an adversary who tries to foil the
algorithm by designing suitable inputs so that the algorithm takes a longer time.
Creation of randomness is a very important component of randomized algorithms. The

randomness is also created by generating random numbers using different methods.

• TYPES :
There are two types of randomized algorithms

o Las Vegas Algorithm
o Monte Carlo Algorithm

A Las Vegas algorithm either will terminate when the correct answer of probability > ½ or
will not give any output. It may terminate and give correct answer or may not terminate at all.
But if the algorithm produces an answer, it will be always correct. Also one can improve the
probability of the correct answer by having more number of trials.

Monte Carlo algorithms are applied to decision problems that always give either yes or no
kind of answers.

• If the answer is ‘yes’, then the result is correct with probability larger than ½.

• If the answer is ‘no’, then the algorithm does not give any answer. However,
circumstantially one may conclude that the correct answer is no.

RANDOMIZED QUICKSORT:

Based on the complexity analysis, the average run time is (n log n). When the elements are
already sorted, the performance of the algorithm time is reduced to (. One way to avoid this is to
introduce a pre-processing step to randomize the input elements so that the algorithm would
always perform in time.

The informal algorithm for randomized quicksort is given as follows:

Step 1: Pick an element of the array randomly as a pivot element.

Step 2: Use the pivot element to position the list into sub-lists.
Step 3: Recursively sort the sub-lists.

Step 4: Combine all the sorted sub-lists.

The formal algorithm for randomized quicksort is given as follows:

Algorithm of randomized quicksort A [first, last]:

%% Input: Array A
%% Output: Pivot element
Begin

if first<last then
k=random(first, last) %% Generate the random number in this range
swap (a[first]),k)

pivot Rsplit (A) %% Select the pivot randomly
randomized quicksort (A[first…pivot])
randomized quicksort(A[pivot+1,last])

end if
End

Complexity Analysis of Randomized Quicksort:

Let the input array A be {x1, x2, x3,…xn } and Xij be the indicator random variable indicating
whether two elements xi and xj be compared or not.

In other words, the number of comparisons to be performed is the upper bound of the run
time of the problem. However, in the randomized version the analysis has to involve indicator
variable. Thus this is denoted as follows

PSPACE [POLYNOMIAL SPACE]:
In Computational complexity theory, PSPACE is the set of all decision problems that can be
solved by a Turing machine using polynomial amount of space.

If we denote by SPACE (f (n))

The class PSPACE is closed under operations union and complementation. We want
algorithm which uses small amount of memory. So that large amount of data can be manipulated
without storing all data to computer hard-disk at a time. An algorithm take sub linear space
because i/p n bits takes linear space.
Two –Tape Turing machine is used:

• Read-only tape containing i/p.
• Work-tape that can be freely used.

Space required by work tape contribute to space complexity, L=SPACE (log n) &
NL=NSPACE (log n).

PSPACE-COMPLETENESS:
All the decision problem that can be solved in P i/p length & if every other problem solved in
polynomial space can be converted to polynomial time. A language ‘A’ is PSPACE-complete if
it satisfies the two condition:

• ‘A’ is in PSPACE (APSPACE)
• Language belongs to PSPACE can be polynomial time reducible to ‘A’.

APPLICATION:
• Hex (board game).
• First order logic of equality.
• First order theory of well-ordered sets.
• Lambda Calculus etc...

