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Unit-I INTRODUCTION

ALGORITHM:
A finite set of instruction and specified a sequence of operation is to be carried out in order to 

solve a specific problem or a class of problem 
CHARACTERISTICS:
*Input
*Output
*Definiteness
*Finiteness
*Effectiveness
*Uniqueness

*Feasible
*Flexibility
*Efficient
*Independent
*Correctness
*Simplicity
ADVANTAGES:
*Effective communication
*Easy debugging
*Easy and efficient coding
*Independent of programming languages
DISADVANTAGES:
*Developing algorithm for complex problem could be time consuming and difficult to 
understand
*It is tedious task to understand the algorithm 
NEED OF ALGORITHM:
*To understand the basic idea of the problem
*Find an approach to solve the problem
*Efficiency of executing techniques
*To understand the basic principal of designing algorithm.
Computer science is the systematic study of algorithm and data structure specified the common 
property the mechanical and linguistic realization and application.
ALGORITHMIC THINKING:



Algorithmic thinking is an analytics skill that is required for writing effective to solve the 
problem.
ALGORITHMICS:
Algorithmic is the art of designing, implementing, analyzing algorithm.

PROBLEMS:
*Computational 
*No computational
COMPUTATIONAL PROBLEM:
*Structuring problems and search problems
*Construction problem
*Decision problem
*Optimization problems
FACTORS:
*Relationship between input and output
*Legal input and correct output
FUNDAMENTAL STAGES OF PROBLEM SOLVING:
1) Understanding the problem 
2) Planning an algorithm
3) Designing an algorithm
*A skilled designer algorithmic is called algorists.
*The algorithm can be coded this stage is called algorithm specification
3 Stages:
*Natural language
*Pseudo code
*Programming language
4) Validity and verification of algorithm
5) Analysis an algorithm
6) Implementing an algorithm
7) Performing empirical analysis

CLASSIFICATION OF ALGORITHM:

Algorithm

Based on                                   based on area of based on design based on 

Implementation                       specification tractability



BASICS OF ALGORITHM ANALYSIS:

Measure for algorithm
Analysis

Subjective objective
Measures measures

Dynamic static
Objective objective
Measure measure

Analysis of a program involves two factors 
*Run time
*Compile time
TIME COMPLEXITY:

Time complexity is a measure of how much run time an algorithm required for executed when 
the input size is scaled.
CLASS OF FUNCTIONS:
Types of time functions

*Constant-0(1)
*logarithmic-0(log n)
*Linear -0(n)
*Quadratic-0(n2)
*Cubic-0(n3)
*Exponential-0(2^n)

MEASURING RUN TIME:
*STEP COUNT
*OPERATION COUNT
*ASYMPOTIC ANALYSIS
*RECURRENCE RELATIONS
*AMORTIZED ANALYSICS
STEP COUNT:

*Ullman proposed step count
*To determine upper and lower bound.

OPERATION COUNT:



* Knuth proposed operation count.
*To determine worst, best, average

STEP COUNT:
a) Declarative statement 

*With no initialization have a statement count of zero. Incase initialization made step count 
is 1.

b) Comments and brackets
Step count is zero.

C) Expression
Step count is 1.

d) Assignment statement, function return statement and other statement
Step count is 1.

Algorithm test(A,B,C)

Begin

A=A+1;

C=A+2;

D=A+B;

End

Total count is obtained by multiplying the frequency and steps for execution

Step no. Program Steps for 
execution

Frequency Count 

1
2
3
4
5
6

Algorithm
Begin
A=A+1
C=A+2
D=A+B
End

0
0
1
1
1
0

-
-
1
1
1
-

-
-
1
1
1
-

Total= 3
OPERATION COUNT:

It is no of operation is counted instead step for algorithm analysis the operation can be divide 
into2 categories.
*Elementary or basic 
*Non elementary or non-basic
Some of commonly used basic operation are 
*Assignment operation
*Arithmetic operation
*Logical operation



*Compression operation
Non elementary operation involves many elementary operations sorting, finding or maximum or 
minimum of array etc….

Step required for performing operation:
*Count the no of basic operation of the program and express as a formula
*Simplify the formula
*Represent the time complexity as a function of operation count 

RULES FOR FINDING THE OPERATION COUNT FOR AN 
ALGORITHM:

SEQUENCE:
Begin 
S1 required m operation
S2 required n operation
End

SELECTION:
Statement p requires m operation
Statement q requires n operation

The maximum no of operation of either if part or he else part is considered as the operation count
REPETATION:

If a loop execute a task n times and if a task involves m operation then task is m x n this is 
called multiplication principle.
1)
Algorithm 
Step no, Algorithm 

segment
Elementary 
operation 
accounted for

Operation cost Repetation

1

2
3

4

5

6

Algorithm 
swap(a,b)
Begin
Temp=a;

A=b;

B=temp;

end

-

-
Assignment 
operation
Assignment 
operation
Assignment
Operation
-

-

-
C1

C2

C3

-

0

0
1

1

1

0
T(n)= C1+C2+C3

This is Constant time algorithm.



For loop:

1) For(i=0;i<n;i++){

Statements;     ----time complexity=O(n)

}

2) For(i=n;i>n;i--){
Statements;  ----time complexity=O(n)

}

3) For(i=0;i<n;i=i+2){

Statements;  ----time complexity=O(n/2)

}

4) For(i=0;i<n;i++){ -----n+1
For(j=0;j<n;j++){ -----n(n+1)
Statements; -----n*n
}}
Time complexity-T(n)=O(n2)

5) P=0;

For(i=1;p<=n;i++){

P=P+i;

}

i p
1
2
3
.
.
.
k

0+1=1
1+2=3
1+2+3=6
.
.
.
.



1+2+3+…..+k=(k(k+1))/2

p =(k2+k)/2

Assume,

p>n

=(k2+k)/2 >n

=k2>n

K=√n

O(n)= √n

While:

1) I=0 -----1

While(i<n){ -----n+1

Statement; -----n

I++; -----n

} ------------

3n+2

Time complexity=O(n)

2)a=1; ----1

While(a>b){ ----n+1

Statement; ----n

A=a*2; ----O(log2n)

}



Time complexity=O(log2b)

3)i=1;
While(i>1){
Statement;
i=i/2;
}
Time complexity=O(log n)

If:
1)While(m!=n){

If(m>n)

M=m-n;pl

Else

M=n-m

}

Time complexity=O(n)

2)algorithm test(n){

If(n<5){

Printf(n);

}

Else{

For(i=0;i<n;i++){

Printf(n);

}}}

Best case time complexity=O(1)

Worst case time complexity=O(n)



BEST, WORST, AVERAGE CASE COMPLEXITY:
Worst, best, average case efficient of algorithm can be estimated by considering the 

different distribution of input data.
WORST CASE COMPLEXITY AND UPPER BOUND:

It is defined t(n) has the complexity function w(n) of the worst  case input for which the 
algorithm takes maximum time and also cause a computer to run lower.

W (n) =max
Example: w (n) =0(n) linear search
BEST CASE COMPLEXITY AND LOWER BOUND:

The best case of analysis give the minimal computation of algorithm for all the validity input 
of the algorithm 

B (n) =min
Example: b (n) =1 linear search
AVERAGE CASE COMPLEXITY:

Average case analysis assume that input is a random and provide predation about the 
running time of the algorithm for random input
BINARY SEARCH TREE

*Best case-searching root elements
*Worst case-searching leaf elements

ASYMPTOTIC ANALYSIS:
*It is analysis of a given algorithm with larger value of input data. it is theory of 

approximation.
*It can be very effective for algorithm analysis for finding exact time complexity is difficult 

for process of counting.

ASYMPOTIC NOTATIONS:
This are helpful in classify algorithm and also specify upper and lower bound of an 

algorithm. All time functions are of the form t:n->r the functions t evaluates only for integral 
natural number and r is the positive real number.
BIG OH NOTATION:

It can be used in following incident for expressing upper bound or worst case algorithm while 
expressing time complexity is almost condition.
Let g and h be a set of two functions that map a set of two natural numbers through a set of 
positive numbers t=n;R>=0 let o(g) is a similar rate of growth with relation t(n)=O(g(n)) holds 
true if there exits two positive constants c and n0 such that t(n)<=c* g(n)

The function t(n) is said to be O(big oh) of g(n). this is denoted as t(n) ε O(g(n)) or t(n)=O(g(n))

Then implies that t(n) is said to be O(big oh) of g(n) .then approximately g(n) function (i.e) a function with a 
growth rate less than or equal to that of g(n) this implies that t grows at a slower rate than a constant time g(n) 
for the all values of larger input of size N.



Time c*g(n)

T(n)

input n

example:

t(n)=2n+3

2n+3 <= 10 n n=1

T(n)<=O(g(n))

2n+3<=2n+3n

2n+3<=5n

T(n)εO(g(n))

2n+3<=2n2+3n2

T(n)=O(n2)

BIG OMEGA NOTATION:
It can be used in following incident for expressing lower bound or best case algorithm 

while expressing time complexity is almost condition.
Definition:
Let t and g be two function that map a of set of natural number through a set of position 
realnumbers t=N->R<=0. Let P(g(n)) holds true if there exists two positive constants c and n0

such that t(n)>=c*g(n).
The function t(n) is said to be Ωof  g(n).this is denoted as t(n)εΩ(g(n)) or t(n) =Ω(g(n))
This implies that t(n) never takes more than approximately g(n) function (i.e) a function with growth rate 
constant time that of g(n).



t(n)

c*g(n)

time

input n

example:

t(n)=2n+3

2n+3>=1*n

2n+3>=1*log n

Big theta notation:

This notation gives the both upper bound and lower bound of algorithm . let t and g 
two function that map a set of natural numbers to a set of positive real numbers .let 
the relationship c1.g(n)<=f(n)<=c2.g(n) for all n>=n0 and for constants c1 and c2 
then it can be represented as t(n)= Θ(g(n))

That is t(n) grows at a same rate of constants time g(n) for sufficiently large value 
of n.



time c2.g(n)

c1.g(n)

input n

example:

t(n)=n2log n+n

1*n2log n<=n2log n*n=10n2log n

Θ(n2log n)

Little oh notation

It can be used instead of big oh notation as a little oh notation represents a lower  
bound the relation t(n)=og(n)) holds good if  the two positive constants c and n0 such that 
t(n)<c*g(n)

Little omega notation:

The relation t(n)=ω (g(n)) holds good if the two positive constant c and n0 such that 
tn>cx g(n)

Tilde:

The notation helpful for when function t(n) and g(n) grows at the same rate.

Name of the 
notation

What it means In terms of limit How it is 
represented

Equivalent to

O(big oh) Growth of t(n) is 
<=the growth of 
g(n)

Limnto ∞ 
t(n)/g(n)=
c

c>=0

T(n)=O(g(n)) <

Ω(big omega) Growth of t(n) Lim n to ∞ T(n)= Ω(g(n)) >



is>=the growth 
of g(n)

t(n)/g(n)=0

Θ(theta) Growth of t(n) is 
>= the growth of 
g(n)

Lim n to ∞ 
t(n)/g(n)=c1
c>0

T(n)= Θ(g(n)) ~

o(little oh) Growth of t(n) is 
<< the growth of 
g(n)

Lim n to ∞ 
t(n)/g(n)= 0

T(n)=o(g(n)) <

ω(little omega) Growth of t(n) is 
>> the growth of 
g(n)

Lim n to ∞ 
t(n)/g(n)=∞

T(n)=ω(g(n)) >

~(tilde) Growth of t(n) is 
= to the growth 
of g(n)

Lim n to ∞ 
t(n)/g(n)=1

T(n)~g(n) =

ASYMPOTIC RULES:
*Reflectivity rule
*Transitive rule
*Law of composition
*Multiplication rule 
*Law of addition

Reflexivity rule:

For any complexity function g(n) the reflexivity property is given as t(n)=O(g(n)), t(n)= Ω
(g(n)),t(n)= Θ(g(n))

Transitive rule:

if t(n)=O(g(n)) and g(n)=O(h(n)) then transitive rule defines as t(n)=O(h(n))

Law of composition:

O(O(t(n)))=O(t(n))

Law of addition:

Assume that the algorithm a is written in such a way that some portion of have complexity 
n,n2,log n and some have n+log n+n2. The law of addition states the following.

T(n)+g(n)=O(max(t(n),g(n)))

T(n)+g(n)= Ω (max(t(n),g(n)))

T(n)+g(n)= Θ (max(t(n),g(n)))



Multiplication rule:

For i=1 to n do -------execute n+1 times

Perform operation O(1)----i
execute n time

End for

O(1)=)(n)

If there are two loops the inner loop could be executed n+1 times this is called the multiplication 
rule.

SPACE COMPLEXITY ANALYSIS:
Space analysis fixed components and variable port fixed components is defined as portion of 

memory that are independent of input output.
ANALYSIS OF RECURSIVE ALGORITHM THROUGH RECURRENCE 

RELATIONS:
*To analysis the recursive algorithm.
*Recurrence equations defines a sequence using the elements of the sequence .a sequence is a 

finite or infinite list of no’s.
*The recurrence relation is basically definition of a function I in terms of itself 
*The recurrence equation are difference equation is a descript equivalent of a differential 

equation that express a terms of sequence as a function of residing terms.
CLASSSIFICATION:

Recurrence relation

Linear recurrence non-linear recurrence

LINEAR RECURRENCE:
 A linear recurrence equation for a sequence {t0,t1,t2,…..tn} express the final terms tn as 

a linear combination of its terms in a polynomial form.
 The recurrence equation of Fibonacci seriescan be represented as tn=tn-1+tn-2

 In general the recurrence equation is a0= tn+tn+1+…..aktn-k=t(n).where k and ai terms are 
constant k be the order of recurrence equation.

Types:
*based on order
*based on co efficient



*based on homogeneity
Order of recurrence equation:
*The number of residing terms used for computing the present terms of a sequence is called 
the order of recurrence equation.
*the order is difference between the highest be lowest subscript of dependent variable in 
recurrence equation.
Example:

Tn-Tn-1-Tn-2=0
The order is n-(n-2)=2
First order-factorial number
Tn=tn-1+1
Second order-general order
F(x)=a0tn-1+a1tn-1+a2tn-2

Homogenous vs non homogenous:
Consider this function f(n)=a0tn-1+……antn-k

If f(n)=0 then it is called as homogenous equation.
Example:
Tn=tn-1+tn-2

If f(n) !=0 then it is called as non homogenous equation.
constant vs variable coefficient:

f(n)=a0t0+a1tn-1+…antn-k

in above equation the ai may be constant on variable.
NON LINEAR RECURRENCE:

It depends mainly on divided & conquer method.
MEHODS FOR SOLVING RECURRENCE EQUATION:
*Guess and verify method
*Substitution method
*Recurrence tree method
*Difference method
*Polynomial reduction
*Generating function
*Table loop up method/master theorem method.
MASTER THEOREM:

Let the time complexity function  be the positive and eventually a non- decreasing function 
of following form
T(n)
T(n)=at(n/b)+cnk

T(1)=d



Where d, a, k and b are all constants and b≥2, k≥0, a>0, c>0 and d≥0.The solution for the 
recurrence equation is given as follows:
Case 1: t(n)€ Θ(nk) if a<bk

Case 2: t(n)€ Θ (nklog n) if a=bk

Case 3: t(n)€ Θ(n logba) if a>bk

Example;
T(n)=8t(n/2)+n2

At(n/2)+cnk

A=8,b2,c=1 and k=2
There conditions are

1. A=bk

2. A>bk

3. A<b2

RECURSION TREE[SUBSTITUTION METHOD AND TREE METHOD]: 
PROBLEMS
Substitution method

a) T(n)=T(n-1)+log n
Subs T(n-1)
T(n-1)=T(n-2)+log(n-10
T(n)=[T(n-3)+log (n-2)+log(n-1)]+log n
.
.
.
T(n-k)+log(n-(k-1))+log(n=-(k-2))+log(n-(k-3))+log n
Let n-k=1
K=n
1+log 1+log 2+log 3+…+log n
1+log(n!)
1+log nn

T(n)=O(n log n)



Tree method 
T(n)

Log n T(n-1)

Log(n-1) T(n-2)

Log(n-2) T(n-3)
.
.
.

T(2)

Log 2 T(1)

Log 1 T(0)
Log n+log (n-1)+…..log2+log 1
Log[n(n+1)….2*1]
Log n!
O(n log n)=T(n)

2)T(n)={1     ,n=1;
2T(n/2) ,n>1

Solution:
Substitution method
Subs T(n/2)

T(n)=2(2T(n/22)+n/2)+n
T(n)=22T(n/22)+n+n
Subs T(n/22)
T(n)=22[2T(n/22)+n/22]+2n

23T(n/23)+3n
.
.

T(n)=2kT(n/2k)+kn
Assume T(n/2k)=T(1)
n/2k=1
n=2k



k=log n
T(n)=2kT(1)+kn
n*1+n log n
T(n)=O(n log n)
Tree method

N
n/2 n/2

n/22 n/22 n/22 n/22

n/23 n/23 n/23 n/23 n/23 n/23 n/23 n/23

. .

. .

. .
n/2k n/2k

assume n/2k=1
n-2k=k
k=log n

UNIT-2

FUNDAMENTAL ALGORITHMIC STRATEGIES

Brute Force Approach 

This is approach is a direct and straight forward techniuqe of a problem 
solving in which all the possible solutio of a given problem are enumerated.We solve a 
many problems in life using Brute force Approach.

EXAMPLES:  

1.Exploring all the park to a nearby market to find the shortest path.

2.Arranging book in a reach using all possibilities to optimize the book rack

3.Suitcase password checking.



ADVANTAGE:

• This is the directed way to find the correct solution by listing all the possible 
solution of a problem.

• Brute force Approach is ideal for solving smaller and similar problem.It can 
serve as a comparison bench mark.

• It is a generic method because it is not linked to any specific domain of 
problem.

DISADVANTAGE:

• Brute force algorithm are slow.

• Brute force method is inefficient.

• This method depend on the computing power of computer system for 
solving problem on a good algorithm design.

• Brute force algorithm are not creative compared to algorithm that are 
constructed using some other design methods.

Greedy Approach

The aim of optimization problem is to find a but solution from all 
feasible solution.Optimization method are used in stages.At every stage a 
decision are choice in made this decision are locally optimal 
solution.Finally,the global optimal solution by combining locally optimal 
solution (i.e it will start with empty set )

COMPONENTS OF GREEDY ALGORITHM:

• Objective funtion

• Generating multiple candidate solution 

• Selection procedure 

• Feusibility check 

• Solution check 

1.OBJECTIVE FUNCTION:



• It should be either maximized or minimized based on the given problem.

2.GENERATING MULTIPLE CANDIDATE SOLUTION:

• A Greedy problem may have n inputs or candidate solution.All possible 
solution may not be optimal solution.Hence it has to be check whether the 
candidate solution fulfill the constraints if so they are selected as a possible 
solution.

3.SELECTION PROCEDURE:

• A solution procedure must exists for a greedy algorihm to choose the next 
algorithm.Selection must be done based on some greedy criteria.

4.FEUSIBLITY CHECK:

• It determine the selected item is feasible as per the constraints.

5.SOLUTION CHECK:

• This check whether the partial solution together construct a global solution 
for the given problem and if so solution is return.

ALGORITHM:

%%Input:ArrayA[…….n]

%%Output:Solution of a problem

Solution set=NULL

While(solution is not complete)

do

Select a best candidate solution X % Selection procedure

If X is a feasible solution then

%%Feasible if

%%Constraints are satisfied

Add the solution ‘X’ to the solution set

End if



%%Check if the solution of the given problem is obtained if(solution obtained)then  %% 
Solution check  return solution set

End if

End white

End

DYNAMIC PROGRAMMING

Dynamic proramming is useful for solving the multistage optimization.A problem is 
divide and problem into sub problem and establish the accursing problem.A sub problem trait 
represent the all part of the original problem which is solved for obtaining the optimal 
solution.This process of enlargement repeated till the age of the sub problem numbers the whole 
original problem that is solution for the whole problem is obtained by combining of  the optimal 
solution of the subproblem.

COMPONENTS OF DYNAMIC PROGRAMMING:

• Stages

• State

• Decision

• Policy

DECISION:

In every stage there can be multiple decision out of which the best solution will be taken.That is 
decision taken at every stage should be called stage variable.

STATE:

A state indicate the sub problem which the decision needs to be taken.The variable that are used 
to taken on decision at every stage.That are called state variable.

POLICY:

A policy is a rule that determined the decision at each stage.A policy is called optimal policy if it 
is globally optimal.This is called Bellman’s principal of optimality.

Branch and bound technique



Branch and Bound technique uses the state space tree fo solving the problem.It is used for 
solving the optimisationproblem.So in this technique we have two steps used to solve the 
problem.

1.Branching

2.Bounding

It is the first step in which involves division of a given problem into two or more 
subproblem.The subproblems are similar to the original problem but smaller in sizethe operation 
that are applied for the original problem are applied to the sub problemAssume that f(x) is the 
function sub problem and S is the state space tree that has all solving.Hence it is set S is called 
teasibleregion.Hence set can be divide into k region such that the union of all Si use back Si

The division of staete space based on the constraints associated with the given 
problem.Thesecod step is called the boundig step which helps in limiting the growth of the state 
space.

BACKTRACKING

Backtracking is the systematic method for seraching one or more solution for a given 
problem.Its is a refind brute force approach used for solving problem.It can reaffctively solve 
multidecision problem where the final solution is visualized as set of divisions/choices.The 
execution of decision/choices leads  another set of decision.This decision can be followed till one 
encounters a successful solution.It solves three kinds problem

1.Enumeration problem

2.Decision problem

3.Optimisation problem

In back tracking the constraints of the given problem is given by the bounding 
function.Back tracking process defines a solution vector as n tuple vector for the given problem 
where n is the number of components of solution vector and each excite represents a partial 
solution.This partial solution components are generated based on the concepts of constraints.In 
backtracking two types of constraints they are:

1.Implicit

2.Explicit



1.IMPLICIT:

• Implicit constarints are rules that limit the processing of solution vector that 
maximize or satisy the craterianfunction.Thecarterian function is called a 
Bounding/Validity promising function.

2.EXPLICIT:

• Explicit constraints are rules that resctrict the components of the solution vector 
Xi form chosing specific value from a set S.

Knapsack problem

The kanpsack problem has knapsack of capacity K there are n different items each of 
which is associated with a weight Wi and profit Pi.

The objective of this problem is to load a knapack with as many as item as possible 
subjected to the capacity of the knapsack to get the maximum profit.

TYPES OF KNAPSACK PROBLEM:

1.Fractional knapsack problem

2.Integer knapsack problem

ALGORITHM:

i%%Input i times with profit

%%Output:Optimal packing order of itmes stored in solution vector

Begin

%%Intialize the solution vector

For i<=1 to n do

x(i):=0.0;

End for

Load=0                %%Intialise weight of knapsack i

i=1                            %%start with the first size



while((load<w)and (i<=n))do

if((wi+load)<=w)then

load=load+wi;      %%load item fully

x(i)=1;   %%mark in the solution vector that the item is loaded fully.

Else

r=w=load                 %%compute the space left out

load=load+r/wi           %%fit knapsack with fraction of items

x(i)=r/w(i) %%record the amountof items in solution vector

end if

end while

return(x) %%Return vector solution

End

KNAPSACK PROBLEM USING GREEDY APPROACH
1)
Items 1 2 3
weight 14 18 10
profit 24 20 16

M=0
Solution:
p/w 1.7 1.1 1.6

N=3,m=20
X=(x1,x2,x3)
X1=20-14=6
X3=6/10
X=(1,0,6/10)
Total weight=∑3

i=1xiwi

=x1w1+x2w2+x3w3

=14*1 + 0*18 +6/10*10



=14+0+6
Total weight=20
Total profit=∑n

i=1xipi

=x1p1+x2p2+x3p3

=1*24 + 0*20 + 6/10*16
=24+9.6
Total profit=33.6
Knapsack problem using dynamic programming:
items 1 2 3
weight 1 2 4
value 1 6 4
M=3
Solution:
p w 0 1 2 3
- - 0 0 0 0 0
1 1 1 0 1 1 1
6 2 2 0 1 6 7
4 4 3 0 1 6 -

V(I,w)=max{v[i-1,w],v[i-1,w-w(i)]+pi}
V[1,1]=max{v[0,1],v[0,0]+1}
=max{0,1}
V[1,1]=1
V[1,2]=max{v[0,2],v[0,1]+1}
=max{0,1}
V[1,2]=1
V[1,3]=max{v[0,3],v[0,2]+1}
=max{0,1}
V[1,3]=1
V[2,1]=max{v[1,1],v[1,-1]+6}
=max{1,doesnot exists}
V[2,1]=1
V[2,2]=max{v[1,2],v[1,0]+6}
=max{1,0+6}
V[2,2]=6
V[2,3]=max{v[1,3],v[1,1]+6}
=max{1,1+6}
V[2,3]=7
V[3,1]=max{v[2,1],v[2,-3]+4}
=max{1,doesnot exists}
V[3,1]=1



V[3,2]=max{v[2,2],v[2,-2]+4}
=max{6,doesnot exists}
V[3,2]=6
V[3,3]=max{v[2,3],v[2,-1]+4}
=max{7,doesnot exists}
V[3,3]=7
When i=3,j=3
K[3][3]==k[2][3]
7==7 true (0)
When i=2,j=3
K[2][3]=k[1][3]
7==1 false
When i=1,j=1
K[1][1]=k[0][1]
1==0 false
X={1,1,0}

TRAVELLING  SALESPERSON  PROBLEM:

The travelling salesman problem is a graph computational problem where the salesman 
needs to visit all cities (represented using nodes in a graph) in a list just once and the distances 
(represented using edges in the graph) between all these cities are known. The solution that is 
needed to be found for this problem is the shortest possible route in which the salesman visits all 
the cities and returns to the origin city.

ALGORITHM:

• Travelling salesman problem takes a graph G {V, E} as an input and declare another graph 
as the output (say G’) which will record the path the salesman is going to take from one 
node to another.

• The algorithm begins by sorting all the edges in the input graph G from the least distance to 
the largest distance.

• The first edge selected is the edge with least distance, and one of the two vertices (say A 
and B) being the origin node (say A).

• Then among the adjacent edges of the node other than the origin node (B), find the least 
cost edge and add it onto the output graph.

• Continue the process with further nodes making sure there are no cycles in the output graph 
and the path reaches back to the origin node A.

• However, if the origin is mentioned in the given problem, then the solution must always 
start from that node only. Let us look at some example problems to understand this better.



TRAVELLING SALES PERSON USING DYNAIMMIC PROGRAMMING 
APPROACH:
a)

1 2 3 4
1 0 5 3 10
2 2 0 5 7
3 4 3 0 8
4 6 5 9 0

Solution:
When |s|=Φ
Cost(2, Φ)=d[2,1]=2
Cost(3, Φ)=d[3,1]=4
Cost(4, Φ)=d[4,1]=6
When |s|=1
Cost(2,{3})=d[2,3]+cost(3, Φ)=5+4=9
Cost(2,{4})=d[2,4]+cost(4, Φ)=7+6=13
Cost(3,{2})=d[3,2]+cost(2, Φ)=3+2=5
Cost(3,{4})=d[3,4]+cost(4, Φ)=8+6=14
Cost(4,{2})=d[4,2]+cost(2, Φ)=5+2=7
Cost(4,{3})=d[4,3]+cost(3, Φ)=9+4=13
When |s|=2
Cost(2,{3,4})=min{d[2,3]+cost(3,{4}),d[2,4]cost(4,{3})}
=min{5+14,7+13}
=min{19,20}
=19
Cost(3,{2,4})=min{d[3,2]+cost(2,{4}),d[3,4]+cost(4,{2})}
=min{3+13,8+7}
=min{16,15}=15
Cost(4,{2,3})=min{d[4,2]+cost(2,{3}),d[4,3]+cost(3,{2})}
=min{5+9,9+5}
=min{14,14}
=14
When |s|=3
Cost(1,{2,3,4})=min{d[1,2]+cost[2,{3,4}],d[1,3]+cost[3,{2,4}],d[1,4]+cost[4,{2,3}]}
=min{5+19,3+15,10+14}
=min{24,18,24}
=18
1—3—4—2—1



TRAVELLING SALES PERSON PROBLEM USING BRANCH AND 
BOUND TECHNIQUE:

1 2 3
1 ∞ 4 2
2 3 ∞ 4
3 1 8 ∞

SOLUTION:
Row reduction
∞ 4 2 2
3 ∞ 4 3 1
1 8 ∞ 1 2 3

-----------
6

∞ 2 0 ∞ 0 0
0 ∞ 1 0 ∞ 1
0 7 ∞ 0 5 ∞
0 2 9 =2

total cost DF reduction
6+2=8
Find cost from(1 to 2)
Make 1st row and 2nd column as infinity and (2,1) as infinity

1 2 3
1 ∞ ∞ ∞
2 ∞ ∞ 1
3 0 ∞ ∞

------
1

C(1,2)+r+r^
=0+8+1
=9
Find cost from (1 to 3)
Make 1st row and 3rd column as infinity and (3,1) as infinity.

1 2 3
1 ∞ ∞ ∞
2 0 ∞ ∞
3 ∞ 5 ∞

1
2 3



--------
5 9 13

=c(1,3)+r+r^
=0+8+5=13

Find the cost from (2 to 3)
Make 2nd row and 3rd column as infinity and (3,2) as infinity.

1 2 3
1 ∞ 0 ∞
2 ∞ ∞ ∞
3 0 ∞ ∞

=c(2,3)+r+r^
=1+9+0=10 9 13

1—2—3—1 
10

N Queen Problem

Given an integer n, the task is to find the solution to the n-queens problem, where n queens are placed 
on an n*n chessboard such that no two queens can attack each other.

What is N Queen Problem?

In N-Queen problem, we are given an NxN chessboard and we have to place N number of queens on the 
board in such a way that no two queens attack each other. A queen will attack another queen if it is 
placed in horizontal, vertical or diagonal points in its way. The most popular approach for solving the N 
Queen puzzle is Backtracking.

Input Output Scenario

Suppose the given chessboard is of size 4x4 and we have to arrange exactly 4 queens in it. The solution 
arrangement is shown in the figure below −

1

2 3

4

1

2 3

3

1



The final solution matrix will be −

0 0 1 0 

1 0 0 0 

0 0 0 1 

0 1 0 0 

Backtracking Approach to solve N Queens Problem

In the naive method to solve n queen problem, the algorithm generates all possible solutions. Then, it 
explores all of the solutions one by one. If a generated solution satisfies the constraint of the problem, it 
prints that solution.

Follow the below steps to solve n queen problem using the backtracking approach −

 Place the first queen in the top-left cell of the chessboard.

 After placing a queen in the first cell, mark the position as a part of the solution and then 
recursively check if this will lead to a solution.

 Now, if placing the queen doesn’t lead to a solution. Then go to the first step and place queens 
in other cells. Repeat until all cells are tried.

 If placing queen returns a lead to solution return TRUE.

 If all queens are placed return TRUE.

 If all rows are tried and no solution is found, return FALSE.



UNIT III

GRAPH AND TREE ALGORITHMS

Traversal Algorithms  :

Traversal algorithms are methods used to visit and explore all the nodes (vertices) in a 
data structure such as a graph or a tree. These algorithms determine the order in which the nodes 
are visited and processed. The two most common traversal algorithms are:

• Depth First Search [DFS]

• Breadth First Search [BFS]

Traversal algorithms are fundamental in graph theory and are essential for various 
applications such as searching, pathfinding, and data analysis in computer science and other 
fields. The choice of traversal algorithm depends on the specific problem and the characteristics 
of the data structure being traversed.

Depth First Search [DFS] :

Depth-First Search (DFS) is a graph traversal algorithm that explores a graph or a tree 
data structure by going as deep as possible along each branch before backtracking. It starts at the 
root node and keeps exploring as deep as it can along a particular path until it reaches a leaf node 
or a node with no unvisited neighbors. 

When DFS reaches a dead-end, it backtracks to the most recent node with unexplored 
branches and continues the exploration from there. This process continues until all nodes have 
been visited.

DFS can be implemented using recursion or an explicit stack data structure. It is useful 
for tasks like searching for a path between two nodes, exploring all possible paths in a graph, and 
finding connected components in a graph

Example :

We use an undirected graph with 5 vertices



Undirected graph with 5 vertices

We start from vertex 0, the DFS algorithm starts by putting it in the Visited list and putting all its 
adjacent vertices in the stack.

Visit 
the element and put it in the visited list

Next, we visit the element at the top of stack i.e. 1 and go to its adjacent nodes. Since 0 has 
already been visited, we visit 2 instead.

Visit the element at the top of stack



Vertex 2 has an unvisited adjacent vertex in 4, so we add that to the top of the stack and visit it.

Vertex 2 has an unvisited adjacent vertex in 4, so we add that to the top of the stack and visit it.

Vertex 2 has an unvisited adjacent vertex in 4, so we add that to the top of the stack and visit it.

After we visit the last element 3, it doesn't have any unvisited adjacent nodes, so we have 
completed the Depth First Traversal of the graph.

After 
we visit the last element 3, it doesn't have any unvisited adjacent nodes, so we have completed 
the Depth First Traversal of the graph.

Breadth First Search [BFS] :



Breadth-First Search (BFS) is a way to explore a place step by step, starting from the 
center and moving outwards level by level. It's like searching for something by looking at nearby 
things first before checking farther ones.

BFS is often used to find the shortest path from one point to another in a map or a graph. 
It guarantees that you will find the shortest route by exploring the closest options before 
checking the ones that are farther away. It helps you search efficiently by exploring nearby areas 
before moving on to more distant ones.

Example:

Step 1: Initially queue and visited arrays are empty.

Queue and visited arrays are empty initially.

Step 2: Push node 0 into queue and mark it visited. 

Push node 0 into queue and mark it visited.

Step 3: Remove node 0 from the front of queue and visit the unvisited neighbours and push them 
into queue.



Remove node 0 from the front of queue and visited the unvisited neighbours and push into 
queue.

Step 4: Remove node 1 from the front of queue and visit the unvisited neighbours and push them 
into queue.

Remove node 1 from the front of queue and visited the unvisited neighbours and push

Step 5: Remove node 2 from the front of queue and visit the unvisited neighbours and push them 
into queue.



Remove node 2 from the front of queue and visit the unvisited neighbours and push them into 
queue.

Step 6: Remove node 3 from the front of queue and visit the unvisited neighbours and push them 
into queue.
As we can see that every neighbours of node 3 is visited, so move to the next node that are in the 
front of the queue.

Remove node 3 from the front of queue and visit the unvisited neighbours and push them into 
queue.

Step 7: Remove node 4 from the front of queue and visit the unvisited neighbours and push them 
into queue.
As we can see that every neighbours of node 4 are visited, so move to the next node that is in the 
front of the queue.



Remove node 4 from the front of queue and visit the unvisited neighbours and push them into 
queue.

Now, Queue becomes empty, So, terminate these process of iteration.

Shortest Path Algorithm :

The shortest path algorithm is a set of computational methods used to find the shortest 
path between two nodes in a graph or a network. The "shortest path" refers to the path with the 
minimum sum of edge weights (or costs) between the source node (starting point) and the 
destination node (target).

The concept of the shortest path is often used in various real-world applications, such as 
finding the shortest route on a map, optimizing transportation systems, routing data packets in 
computer networks, and solving resource allocation problems. Well-known algorithms for 
finding the shortest path is Dijkstra's algorithm.

Dijkstra's Algorithm:

Dijkstra's algorithm is a greedy algorithm that works efficiently for finding the shortest 
path from a single source node to all other nodes in a graph with non-negative edge weights. It 
maintains a priority queue to keep track of the nodes to be visited in increasing order of their 
distance from the source node. The algorithm iteratively selects the node with the shortest 
distance and explores its neighbors, updating the distance to the neighbors if a shorter path is 
found. Dijkstra's algorithm guarantees that the shortest path to each node is found in a non-
negative weighted graph.

Algorithm:

Step 1:Take a directed graph and form a distance matrix, as follows:



Step 2: Identify the source node s. This is the starting node.

Step 3: For all other vertices j ≠ s; calculate the new distance. Initially, assign the source s a 
permanent label. This means that the node s has already been selected and its distance from the 
source is known.

Step 4: Choose the remaining vertices. Find the distance of only those vertices that are known to 
s from the source. This is what we call as a special path. This requirement may update the 
distance value. There are only two possibilities: The existing distance may itself be minimum. In 
that case, it is left alone. On the other hand, if the new distance is smaller than the old distance, 
then it is updated. Such a process of improving the result by path update is known as relaxation. 
The minimum vertex is then added to the set of vertices that are known to the source s.

Step 5: Continue Step 4 until all the vertices get a permanent label.

Step 6: Generate paths from the source node s. 

The following is the formal algorithm for this method:

Algorithm SSSP(G) :



Example:



Answer:

Transitive Closure :

Given a directed graph G = (V, E), the transitive closure of G is a new graph G' = (V, E') 
where there is an edge (u, v) in E' if and only if there exists a directed path from vertex u to 
vertex v in G.

Transitive closure is a fundamental concept in graph theory and is used to determine the 
reachability between pairs of vertices in a directed graph. It helps identify all possible paths, 
including indirect paths, between vertices.

The informal algorithm for the Warshall algorithm is given as follows:

Step 1: Read weighted graph G = <V , E >.

Step 2: Initialize P [i ,j] with the adjacency matrix of G. 



Step 3: Recursively compute for k = 1, 2, ..., n.

3a:Pij
k = Pij

(k-1)˅( Pik
(k-1)˄Pkj

(k-1))

Step 4: Return path matrix P.

Step 5: End.

The formal algorithm for the Warshall algorithm can be written as follows:

Algorithm Warshall (G, A):

Example:

For this graph R(0) will be looked like this:



Here R(0) shows the adjacency matrix. In R(0), we can see the existence of a path, which has no 
intermediate vertices. We will get R(1) with the help of a boxed row and column in R(0).

In R(1), we can see the existence of a path, which has intermediate vertices. The number of the 
vertices is not greater than 1, which means just a vertex. It contains a new path from d to b. We 
will get R(2) with the help of a boxed row and column in R(1).

In R(2), we can see the existence of a path, which has intermediate vertices. The number of the 
vertices is not greater than 2, which means a and b. It contains two new paths. We will get R(3) 

with the help of a boxed row and column in R(2). 

In R(3), we can see the existence of a path, which has intermediate vertices. The number of the 
vertices is not greater than 3, which means a, b and c. It does not contain any new paths. We will 



get R(4) with the help of a boxed row and column in R(3). 

In R(4), we can see the existence of a path, which has intermediate vertices. The number of the 
vertices is not greater than 4, which means a, b, c and d. It contains five new paths.

Minimum Spanning Tree:

Minimum Spanning Tree (MST) is a crucial concept in graph theory and optimization. It 
involves finding the smallest tree that connects all vertices in a graph while minimizing the total 
edge weight.

Applications:

• Network design

• Transportation 

• Communication, etc.

Prim's Algorithm:



Algorithm Overview:

• Start with an arbitrary vertex and repeatedly add the edge with the lowest weight 
connecting a vertex in the MST to a vertex outside the MST.

• Maintain a set of vertices in the MST and a set of vertices outside the MST.

• Greedy approach: Always choose the edge with the minimum weight to expand the MST.

Example:

Step 1 - First, we have to choose a vertex from the above graph. Let's choose B.

Step 2 - Now, we have to choose and add the shortest edge from vertex B. There are two edges 
from vertex B that are B to C with weight 10 and edge B to D with weight 4. Among the edges, 
the edge BD has the minimum weight. So, add it to the MST.



Step 3 - Now, again, choose the edge with the minimum weight among all the other edges. In 
this case, the edges DE and CD are such edges. Add them to MST and explore the adjacent of C, 
i.e., E and A. So, select the edge DE and add it to the MST. 

Step 4 - Now, select the edge CD, and add it to the MST. 



Step 5 - Now, choose the edge CA. Here, we cannot select the edge CE as it would create a cycle 
to the graph. So, choose the edge CA and add it to the MST. 

So, the graph produced in step 5 is the minimum spanning tree of the given graph. The cost of 
the MST is given below -

Cost of MST = 4 + 2 + 1 + 3 = 10

Kruskal's Algorithm:

Algorithm Overview:

• Sort all edges by weight in non-decreasing order.

• Start with an empty set of edges and repeatedly add the next edge in the sorted order if it 
does not create a cycle.

• Utilizes the disjoint-set (or union-find) data structure to keep track of connected 
components.

• Greedy approach: Always choose the smallest edge that doesn't form a cycle.

Example:



The weight of the edges of the above graph is given in the below table

Edge AB AC AD AE BC CD DE
Weight 1 7 10 5 3 4 2

Now, sort the edges given above in the ascending order of their weights.

Edge AB DE BC CD AE AC AD
Weight 1 2 3 4 5 7 10

Now, let's start constructing the minimum spanning tree.

Step 1 - First, add the edge AB with weight 1 to the MST. 

Step 2 - Add the edge DE with weight 2 to the MST as it is not creating the cycle.

Step 3 - Add the edge BC with weight 3 to the MST, as it is not creating any cycle or loop.



Step 4 - Now, pick the edge CD with weight 4 to the MST, as it is not forming the cycle

Step 5 - After that, pick the edge AE with weight 5. Including this edge will create the cycle, so 
discard it.

Step 6 - Pick the edge AC with weight 7. Including this edge will create the cycle, so discard it.

Step 7 - Pick the edge AD with weight 10. Including this edge will also create the cycle, so 
discard it.

So, the final minimum spanning tree obtained from the given weighted graph by using Kruskal's 
algorithm is

The cost of the MST is = AB + DE + BC + CD = 1 + 2 + 3 + 4 = 10

Topological Sorting:
Given a directed graph G = (V, E), a topological ordering is a linear ordering of the 

vertices in V such that if there is a directed edge (u, v) in E, then vertex u comes before vertex v 
in the ordering.

Topological sorting is a crucial concept in graph theory and algorithms, especially in 
directed acyclic graphs (DAGs). It provides a linear ordering of the vertices in such a way that 



for every directed edge (u, v), vertex u appears before vertex v in the ordering. Topological 
sorting has applications in scheduling, task sequencing, and dependency resolution.

Algorithm:

Step 1: Initialize a queue Q by traversing the graph and identify the next vertex u with no 
incoming edges. If there are many such vertices, then any node or vertex can be taken for further 
consideration. If there is none, then stop as topological sort cannot be performed.

Step 2: Pick the vertex u.

Step 3: Delete the vertex u that has no incoming edges along with all the edges. 

Step 4: Repeat Steps 1-3 till all the vertices of the given graph are processed.

C

Example:

B

D

E

F

A

1.The adjacency matrix of the graph shown in the above figure is shown in the table.

Adjacency matrix of the graph shown in Figure

A B C D E F
A 0 1 0 0 0 0
B 0 0 1 1 0 0
C 0 0 0 1 0 0
D 0 0 0 0 1 0
E 0 0 0 0 0 1
F 0 0 0 0 0 0



Let us assume that m= 1. It can be observed that all the elements in the first column are zero. 
Therefore, A is assigned a number 1. Then delete the first column and first row, this yields a new 
adjacency matrix as shown in Table

Adjacency matrix after removing A node

B C D E F
B 0 1 1 0 0
C 0 0 1 0 0
D 0 0 0 1 0
E 0 0 0 0 1
F 0 0 0 0 0

2. Delete B. Assign it the number 2 (i.e., m = m + 1). Delete the second row along with column. 
This yields a new adjacency matrix as shown in Table. 

Adjacency matrix after removing B node

C D E F
C 0 1 0 0
D 0 0 1 0
E 0 0 0 1
F 0 0 0 0

3. Delete C. Assign it the number 3 (i.e., m = m + 1). Delete its column along with its row. This 
yields a new adjacency matrix as shown in Table.

Adjacency matrix after removing C node

D E F
D 0 1 0
E 0 0 1
F 0 0 0

4. Delete D. Assign it the number 4 (i.e., m = m + 1). Delete its column along with its row. This 
yields a new adjacency matrix as shown in Table.

Adjacency matrix after removing D node

E F
E 0 1
F 0 0



5. Delete E. Assign it the number 5 (i.e., m=m+1). Deleting the column with its row finally 
yields the node F. The resulting linear ordering of the vertices is shown in Figure. The number of 
vertices assigned by the topological sort is given as a subscript.

F

E

D

C

B

A

Final linear ordering

UNIT-IV

BASICS OF COMPUTATIONAL COMPLEXITY

COMPUTATIONALCOMPLEXITY:
• Thealgorithmiccomplexitytheorydealswiththeanalysisofalgorithmsintermsofcomput

ational resources such astimeorspace.
• Theobjectiveofcomplexitytheoryisto decide whetheragivenalgorithm is 

efficientornot.
• Computationalcomplexitydealswiththesolvabilityofagivenproblem.

CATEGORIZATIONOFALGORITHMS:
• The rearetwocategoriesofalgorithms,

• PolynomialAlgorithm.
• ExponentialAlgorithm

• POLYNOMIALALGORITHM:
• Lettherebeapolynomialp(n)ofdegreen.



• Analgorithmiscalledapolynomialalgorithmiftheupperboundofthealgorithm is 
O(p(n)).

• Examplesofthispolynomialalgorithmaresearching,sortingalgorithms,etc….

• EXPONENTIALALGORITHMS:
• Analgorithmiscalledexponentialif itscomplexityisnotpolynomial.

• In other words, algorithms whose complexity is O(n!) or O(2n) are 
allexponentialalgorithms.

• Thesealgorithmsareinfeasiblealgorithms,thatisthenproblemscannotbesolved 
withinareas onableamountoftime.

• Example forthisalgorithmisTowerofHanoi.

DECISIONPROBLEMSANDTURINGMACHINE:

• The computational complexity theory deals with decision 
problemsratherthanoptimizationproblem.

• Inadecisionproblem(orarecognitionproblem)isa problem inwhichtheoutputofthis 
problem isrestrictedto ‘yes’or‘no’.

• Anoptimizationproblemhasobjectivefunctionsandconstraints.

• Anysolutionthatsatisfiestheconstraints iscalledafeasiblesolution.

• Anysolutionthatsatisfiestheconstraintsandmaximizesorminimizestheobjectivefunc
tion iscalledanoptimal solution.

• Problems such as the TSP, Knapsack problem, and M-colouring 
problemareallexamples of optimizationproblem.

• Conversion of an optimization problem to a decision problem 
isimportant,asadecisionproblemsimplifiestheissuesofcomputabilitywithoutalteringt
heessenceiftheproblem.

• Toprocessadecisionproblem,onerequiresacomputingmodel,calledaTuringMachine.
• ThiswasdesignedbyAllenTuringandwasproposedin1936.

ThecomponentsofaTuringMachine are:
• Memory:

• A Turing Machine has infinite memory in the form of an infinitetape. 
Atapeis dividedinto asetofcells.

• Everycellhasasymbol,called atapesymbol.

• Tapesymbolsarederivedfromthegivenalphabet{0,1}fordecision 
problems.

• Read/Writehead:
• Theread/write headisalsoknownasatapehead.



• Thisisapointerthatpoints tothebeginningofatape.

• States:
• ATuringmachinehasmanystates,and,atanypointoftime,itcanbinanyoneofth

estates.
• Ofallthestatesthe following threeareimportant.

• Startstate:
• The initialstateiscalledq0.

• Atthetime ofinitialization,themachineis inthe startstate.

• qacceptstate:
• Thisiscalledan‘acceptingstate’.

• ATuringmachineisinthisstateforadecisionproblemwhoseansweris‘yes’.
• qreject state:

• Thisiscalledan‘rejectingstate’.

• ATuringmachineis inthestatefora decisionproblemwhoseansweris‘no’.
• Program

• ThisisanimportantcomponentofaTuringmachine.ATuringmachine reads 
an input character under the read/write head,themachine 
movestoanewstate.Thisis calledatransition.

• Transitionsbasedonthecurrentstateandthe newcharactersare well defined 
for a Turing machine and are listed in a tableiscalleda 
‘Transitiontable’.

• Asaresultofatransition,thefollowingactionsarepossible:

• The read/write head moves by one square(or cell) 
ineithertherightortheleftdirection.

• Theread/writeheadcanwriteacharacterwherethetapeheadrests.
• The machine can move to a new state that can be 

aspecialstatesuchasanacceptingstateorarejectingstate.
• TheseareallimportantcomponentsofaTuringmachine.

• EncodingandLanguages:
• ATuringmachinetakesaninputdecisionproblemasanencodedstring

of1s and0s.

COMPLEXITYCLASS:

ComplexityclassescanbedividedintoPclassandNP.



ClassP

All the problems(decision or optimization problems) for which polynomial timealgorithms 
exist are said to belong to the complexity class P. P stands forpolynomialtime.
Examples:searching,sortingandselectionproblems.

ClassNP

>> These problems are said to be intractable,as they do not any efficientsolutions.
>> NP stands for non-determinstic polynomial and refers to problems that aresolvablein 
polynomialtime.

NPproblemsareoftwtypes-NP-hardandNP-complete.

NP-hardproblems

>>Itis notpossibleto solvealltheproblems.
>> If all problems in NP are polynomial time reducible to it,even though it maynotbein 
NPitself.

NP-completeproblems

>> If a polynomial time algorithm exists for any of these problems,all 
problemsinNPwouldbepolynomialtimesolvable.

DETERMINSTICALGORITHM:

>> A deterministic algorithm is one whose behavior is completely determinedbyits 
inputsand thesequenceofits instructions.

>>Foraparticularinput,thecomputerwillgivealwaysthesameoutput.

>>Cansolvetheprobleminpolynomialtime.

>>Operationareuniquelydefined.

>>Likelinearsearchandbinarysearch.

>>Deterministicalgorithmsusuallyhaveawell-definedworst-casetimecomplexity.

>>Deterministicalgorithmsareentirelypredictableandalwaysproducethesameoutputforthe 
sameinput.

>>Deterministicalgorithmsusuallyprovideprecisesolutionstoproblems.



>>Deterministicalgorithmsarecommonlyusedinapplicationswhereprecisioniscritical,s
uchasincryptography,numericalanalysis,andcomputergraphics.

>>Examplesofdeterministicalgorithmsincludesortingalgorithmslikebubblesort,insertionsort,
andselectionsort,aswellasmanynumericalalgorithms.

NON-DETERMINSTICALGORITHM:

>>Anon-
deterministicalgorithmisoneinwhichtheoutcomecannotbepredictedwithcertainty,eveniftheinputs
areknown.

>>Foraparticularinputthecomputerwillgivedifferentoutputsondifferentexecution.

>>Can’tsolvetheproblem polynomialtime.

>>Cannotdeterminethenextstepofexecutionduetomorethanonepaththealgorithmcantake.

>>Operationarenotuniquelydefined.

>>like0/1knapsackproblem.

>>Timecomplexityofnon-
deterministicalgorithmsisoftendescribedintermsofexpectedrunningtime.

>>Non-deterministicalgorithmsmayproducedifferentoutputsforthesameinput 
duetorandomeventsor otherfactors.

>>Non-
deterministicalgorithmsareoftenusedinapplicationswherefindinganexactsolutionisdifficultori
mpractical,suchasinartificialintelligence,machinelearning,andoptimizationproblems.



>>Examplesofnon-
deterministicalgorithmsincludeprobabilisticalgorithmslikeMonteCarlomethods,geneticalgorit
hms,andsimulatedannealing.

NON-DETERMINSTICSTAGES:

Therearetwostages:
• Guessingstage:Itgeneratesanarbitrarystringthatcanbethoughtasacandidatesolution.

• Verificationstage:
>>Inthisstagewetakecandidatesolutionandinstanceoftheproblemastheinput.
>>Itreturnsyesifthecandidaterepresenttheactualsolution(iftheguessingiscorrect).
>>Iftheanswerisnoourguessingiswrong.

REDUCTIONTECHNIQUES:

>>Reductionbytransformandconquermethod.

>>Inthismethod,wesolveadifficultproblembytransformingitintoaknownproblemforwhic
hwehaveanoptimalsolution.

>>Basically,thegoalistofindareducingalgorithmwhosecomplexityisnotdominatedbyt
heresultingreducedalorithms.

UNIT-V
Advanced Topics

APPROXIMATION ALGORITHMS:
• DEFINITION:



An algorithm for problems (mostly NP-Hard or NP-Complete) is an approximate 
algorithm if it can give optimal solutions within a certain bound and also if it is possible to 
establish the solution guarantee analytically in worst case or an average in general.

The quality of an approximation algorithm is decided by
• Time Complexity analysis 
• Comparing the generated feasible solutions with the optimal solutions (‘Goodness Factor’).

Goodness Factor or Goodness of an approximation algorithm relates the solution produced 
by the approximation algorithm and the actual optimal solution of the problem. It can be 
estimated through metrics.  It is preferred to have an absolute performance measures, that is, the 
difference between the optimal and approximate solution is bounded by a constant, say k. But it 
is difficult to find such an approximation algorithm. Hence, one normally takes the relative 
performance.

In relative performance, a ratio of the optimal and approximation solution is obtained. 
This is called Accuracy ratio (k).The range of Accuracy ratio is 0-1.
Let us assume that,
A       - Approximation Algorithm for given problem Q,
I        - Instance of the problem Q,

OPT (I) - Optimal solution of the problem Q,
A (I)   - Feasible near optimal solution.

If Q is a minimization problem, then the ratio k=   
If Q is a maximization problem, then the accuracy ratio is given as the reciprocal of k so that the 

accuracy ratio is the range 0-1.

An approximation algorithm that gives a near optimal solution in polynomial time, 
which is at most r times the optimal solution for any instance of the given problem is called r-
approximation algorithm. Here r is called the worst-case ratio or approximation ratio and is 
given as follows:

The best value of r for which the inequality holds for all instances of the problem, that 
is, r=max I , is called a Performance ratio.

The value of performance ratio ‘r’ is 1 if the problem is of minimization problem and 
for maximization problem r1.

• ADVANTAGES :
• Approximation algorithms optimize computer resources such as space and time. 

Hence, these algorithms are applicable not only to NP-Hard problems but can also 
replace algorithms that utilize more computer resources.

• Approximation algorithms help categorize problems based on their difficulty levels.



• Approximation algorithms are valuable tools for developing and evaluating different 
types of heuristics for a given problem.

• DISADVANTAGES :
• Approximation algorithms focus only on the worst-case measures and ignore 

heuristics that often work well in practical applications.
• Approximation algorithms are limited to only a certain set of problems and not 

applicable to decision problems.

• TYPES :
An optimization problem is characterized by four parameters in approximation problems. 

The complexity classes of decision problems are P, NP-complete and NP-hard. These 
complexity classes can be extended for optimization problems also. These classes are 
called PO, NPO and NP-hard. NPO is a complexity class of optimization problems also.

There are three ways of solving PO, NPO and NP-hard categories of problems:
Exact Algorithms are exponential algorithms that provide exact solutions.
For the given problem. It cannot be practically implemented due to limited computer 
resources.
Approximate Algorithms are suitable for solving PO, NPO and NP-hard problems. 
These algorithms give approximate solutions and it is possible analytically to establish the 
solutions.
Heuristic Algorithms use trial and error methods to provide approximate solutions for 
computationally hard problems. The performances of the heuristic algorithms are often 
verified by computer experiments rather than by analytical methods.

• CLASSIFICATION OF APPROXIMATION ALGORITHMS BASED ON    
APPROXIMATION RATIO :

Based on approximation ratio r, the approximation algorithm can be classified as follows:
Approximate Algorithms An algorithm A is called an absolute or constant ratio 
approximate algorithm if approximate ratio r is a fixed constant. This implies that the 
difference between an absolute optimal solution and the solution generated by the 
approximation algorithm is always a constant. It also means that approximation algorithm 
is independent of the input instance of the problem.
Logarithmic Approximation If r is O (log (I)), where I is the instance of the problem, 
then the algorithm is called a logarithmic ratio or logarithmic approximation.
f (n)-approximation An algorithm A is called f (n)-approximation if and only if, for all 
instances of size, the approximation is O(). This assumes that the approximate solution A 
(I) is greater than Zero.

An algorithm A is called approxiamtion if and                                   
Only if, for all instances of size, the following condition holds:



|A (I)-OPT (I) |≤for all instances I and for >0.
Approximation schemes An approximation algorithm A () is one that accepts two inputs-
input instances and approximation ratio 
(Where >0). It approximates the optimal solution within a bound of (1+) called a Scheme. 
There are two approximation schemes available 
• Polynomial time approximation scheme (PTAS).
• Full time approximation scheme (FPTAS).

VERTEX COVER PROBLEM:

The input for a vertex cover problem is a graph G= (V, E). The aim of the vertex cover 
problem is to find a vertex cover such that every edge of G is incident on at least one vertex in 
vc.

A vertex is said to be a cover or node cover if the edges of the graph G are incident on it. A 
cover is thus a minimum set of vertices which ensures that all the edges of the given graph are 
incident on at least one vertex of the set vc. It is to choose a se S of vertices such that all the 
edges are covered. In other words, all edges are incident at least one vertex of the vertex cover. 
Finding a vertex cover for simple graphs like the preceding example is very easy. However, it is 
difficult in larger graphs that involve many vertices. Thus, vertex cover is an NP-hard problem.

The simplest greedy algorithm for finding a vertex cover is to pick an edge e, e {u, v} 
arbitrarily, and add one of its end points, say v, to a solution cover c. Then the edge e can be 
deleted along with all the edges that are incident to v. The procedure for a greedy vertex cover 
can informally be written as follows:

Step 1: Initialize the vertex cover vc as null, that is, vc = {}.

Step 2: While the edge list E is not empty do the following: 

2a: Pick an edge e=<u, v> arbitrarily

2b:vc = vc  {v}.

2c: Remove e along with all edges u.

2d: End while.

Step 3: Return vc and exit.

The procedure for a greedy vertex cover can formally be written as follows:

Algorithm greedy _ vertex-cover (G)



%% Input: G=<V, E>, E is the edge list and V the vertex list
%% Output: Cover for the given graph
Begin
Vc=   %% Initialize vertex cover as null
E’=E
while (E’) do

pick an edge e=(u, v)E’ arbitrarily
%% for weighted set cover this should be minimum 

vc=vc {v}
%% Update all edge list E’
E’=E’-{all edges that are adjacent to u or v}

End while
Return vc

End

It can be observed that the algorithm keeps picking edges (u, v) and add one end of the edge, 
that is, v to the vertex cover. Then, the edge list is updated. This process is continued till the 
algorithm returns the vertex cover.

A better algorithm can be obtained as follows: Instead of outputting only one vertex u, both the 
end points of the edge can be added onto the vertex. The modified vertex cover approximation 
algorithm procedure can be written as follows:

Step 1: Initialize the vertex cover vc as null, that is, vc = {}.

Step 2: While the edge list E is not empty do the following: 

2a: Pick an edge e= {u, v} arbitrarily.

2b:vc = vc  {u, v}.

2c: Delete e and all edges that has u and v end points.

Step 3: Return vertex cover vc.

The formal algorithm for vertex cover is given as follows:

Algorithm mod_ greedy _ vertex-cover (G)

%% Input: G=<V, E>, E is the edge list and V the vertex list
%% Output: Vertex Cover 
Begin
vc=   %% Initialize vertex cover as null
E’=E
while (E’) do

pick an edge e=(u, v)E’ arbitrarily
%% for weighted set cover this should be minimum 



vc=vc {u, v}
%% Update all edges
E’=E’-{all edges that are adjacent to either u or v}

End while
Return vc

End

Complexity Analysis of vertex cover:

A vertex cover covers every edge in matching M and includes at least one end point. In 
matching, two edges share the same point. Therefore, it can be proved that OPT≥|M|. It has been 
proved that the accuracy ratio is 2, as the arbitrary picking of an edge amounts to maximal 
matching M. The minimal covering is |M|. However, the vertex cover algorithm returns a vertex 
cover with at least vertices of size 2*|M|. Therefore, one can conclude that the returned vertex 
cover is ≥ 2 x OPT. Therefore, it can be observed that the accuracy ratio of vertex cover is 2. 
Thus, the complexity analysis of vertex cover problem is 2 OPT.

RANDOMIZED ALGORITHMS:
• DEFINITION:
The input for a randomized algorithm are similar to those of deterministic algorithms, along with 
the sequence of random bits that can be used by the algorithm for making random choices. In 
other words, a randomized algorithm is one whose behavior depends on the inputs, similar to a 
deterministic algorithm, and the random choices are made as part of its logic. As a result, the 
algorithm gives different outputs even for the same input. In other words, the algorithm exhibits 
randomness; hence its run-time is often explained in terms of a random variable.

• ADVANTAGES :
• Randomized algorithm are known for their simplicity. Any deterministic algorithm 

can easily be converted to a randomized algorithm. These algorithms are very 
simple to understand and implement.

• Randomized algorithms are very efficient. They utilize little execution time and 
space compared to any deterministic algorithms.

• Randomized algorithms exhibit superior asymptotic bounds compared to 
deterministic algorithms. In other words, the algorithm complexity of randomized 
algorithms is better than that of most of the deterministic algorithms.

• DISADVANTAGES :
• Reliability is an important issue in many critical applications, as not all 

randomized algorithms give correct answers always. In addition, many randomized 



algorithms may not terminate. Hence, reliability is an important concern that needs 
to be dealt with.

• The quality of randomized algorithms is dependent on the quality of the random 
number generator used as part of the algorithm.

A randomized algorithm does not use a single design principle. Instead one should view 
randomized algorithms as those designed using a set of principles. Some of the design principles 
are listed below.
Concept of witness this principle involves the question of checking whether a given input 
possesses a property X or not. It is established by finding a certain object called a witness or a 
certificate. The witness is identified to prove the fact that the input indeed has the desired 
property X. By conducting a fewer trials it can be found out whether the property was really 
present. The presence of a witness is a strong proof of the property X. Otherwise one should 
conclude that the input does not have such a property X based on the absence of witnesses.
Fingerprinting Fingerprint is a shorter message that is representative of a larger object. 
Fingerprinting is a technique wherein we get a comparison of two large objects A and B only by 
comparing their respective short fingerprints. If two fingerprints does not match, then the objects 
A and B are different. However, if the fingerprints match then there is a strong circumstantial 
evidence that both objects are the same.
Checking identitiesLet us assume that an algebraic expression is given, and the problem is to 
check whether the expression evaluates to zero or not. The principle of checking identities is to 
plug the random variables of a given algebraic equation and check whether the expression 
evaluates to zero. If it is not zero, then the given expression is not an identity. Otherwise, there is 
a strong circumstantial evidence that the expression is identically zero.
Random sampling and ordering Performance of an algorithm sometimes improves by 
randomizing the input distribution or order. It can be observed that for certain ordering of the 
inputs the performance of the algorithm can be higher or just acceptable. Here, randomization 
leads to randomized ordering, partitioning and sampling.
Foiling the adversary Randomized algorithm can be viewed as a game between a person 
and an adversary that is a person proposing an algorithm and an adversary who tries to foil the 
algorithm by designing suitable inputs so that the algorithm takes a longer time.
Creation of randomness is a very important component of randomized algorithms. The 

randomness is also created by generating random numbers using different methods.

• TYPES :
There are two types of randomized algorithms

o Las Vegas Algorithm
o Monte Carlo Algorithm



A Las Vegas algorithm either will terminate when the correct answer of probability > ½ or 
will not give any output. It may terminate and give correct answer or may not terminate at all. 
But if the algorithm produces an answer, it will be always correct. Also one can improve the 
probability of the correct answer by having more number of trials.

Monte Carlo algorithms are applied to decision problems that always give either yes or no 
kind of answers.

• If the answer is ‘yes’, then the result is correct with probability larger than ½.

• If the answer is ‘no’, then the algorithm does not give any answer. However, 
circumstantially one may conclude that the correct answer is no.

RANDOMIZED QUICKSORT:

Based on the complexity analysis, the average run time is (n log n). When the elements are 
already sorted, the performance of the algorithm time is reduced to (. One way to avoid this is to 
introduce a pre-processing step to randomize the input elements so that the algorithm would 
always perform in time.

The informal algorithm for randomized quicksort is given as follows:

Step 1: Pick an element of the array randomly as a pivot element.

Step 2: Use the pivot element to position the list into sub-lists.
Step 3: Recursively sort the sub-lists.

Step 4: Combine all the sorted sub-lists.

The formal algorithm for randomized quicksort is given as follows:

Algorithm of randomized quicksort A [first, last]:

%% Input: Array A
%% Output: Pivot element
Begin

if first<last then
k=random(first, last)    %% Generate the random number in this range
swap (a[first]),k)



pivot  Rsplit (A)         %% Select the pivot randomly
randomized quicksort (A[first…pivot])
randomized quicksort(A[pivot+1,last])

end if
End

Complexity Analysis of Randomized Quicksort:

Let the input array A be {x1, x2, x3,…xn } and Xij be the indicator random variable indicating 
whether two elements xi and xj be compared or not.

In other words, the number of comparisons to be performed is the upper bound of the run 
time of the problem. However, in the randomized version the analysis has to involve indicator 
variable. Thus this is denoted as follows





PSPACE [POLYNOMIAL SPACE]:
In Computational complexity theory, PSPACE is the set of all decision problems that can be 
solved by a Turing machine using polynomial amount of space.

If we denote by SPACE (f (n))

The class PSPACE is closed under operations union and complementation. We want 
algorithm which uses small amount of memory. So that large amount of data can be manipulated 
without storing all data to computer hard-disk at a time. An algorithm take sub linear space 
because i/p n bits takes linear space.
Two –Tape Turing machine is used:

• Read-only tape containing i/p.
• Work-tape that can be freely used.

Space required by work tape contribute to space complexity, L=SPACE (log n) & 
NL=NSPACE (log n).

PSPACE-COMPLETENESS:
All the decision problem that can be solved in P i/p length & if every other problem solved in 
polynomial space can be converted to polynomial time. A language ‘A’ is PSPACE-complete if 
it satisfies the two condition:

• ‘A’ is in PSPACE (APSPACE)
• Language belongs to PSPACE can be polynomial time reducible to ‘A’.

APPLICATION:
• Hex (board game).
• First order logic of equality.
• First order theory of well-ordered sets.
• Lambda Calculus etc...


