
CSPC702 - EMBEDDED SYSTEMS
AND INTERNET OF THINGS(IOT)

UNIT – I Introduction to Embedded Systems

Syllabus- Unit I
Introduction to Embedded Systems

➢Introduction to Embedded Systems

➢Applications of embedded system

➢Features and Attributes of Embedded System

➢Challenges in Embedded System

➢Selection of Processors

➢Recent trends in embedded system

➢Embedded Firmware design approaches and development languages

➢Embedded development life cycle.

Introduction to Embedded Systems
Definition

• It is an Electronic/Electro-
mechanical system designed to
perform a specific function and is a
combination of both hardware &
software. OR

• A combination of hardware and
software which together form a
component of a larger machine.

What is an Embedded system?

➢ An embedded system is one that has computer

hardware with software embedded in it as one of

its components.

Or

➢ We can define an embedded system as “A

microprocessor based system that does not look

like a computer”.
Or

➢ we can say that it is “A combination of computer

hardware and software, and perhaps additional

mechanical or other parts, designed to perform a

dedicated function. In some cases, embedded

systems are part of a larger system or product, as

is the case of an antilock braking system in a car

”.

What is an Embedded system?
• An Embedded system is a combination of computer hardware and

software. As with any electronic system, this system requires a hardware
platform and that is built with a microprocessor or microcontroller.

• The Embedded system hardware includes elements like
• user interface,
• Input/Output interfaces,
• display and memory, etc.

• Generally, an embedded system comprises power supply, processor,
memory, timers, serial communication ports and system application
specific circuits.

• Embedded system software is written in a high-level language, and then compiled
to achieve a specific function within a non-volatile memory in the hardware.

• Embedded system software is designed to keep in view of three limits. They are
availability of system memory and processor speed.

• When the system runs endlessly, there is a need to limit the power dissipation for
events like run, stop and wake up.

http://en.wikipedia.org/wiki/Microcontroller

Introduction to Embedded Systems (contd.)

➢An example of an embedded system is a microprocessor that controls an

automobile engine.

➢An embedded system is designed to run on its own without human

intervention, and may be required to respond to events in realtime.

Introduction to Embedded Systems (contd.)

System Examples

Introduction to Embedded Systems (contd.)

History of Embedded system

• Here, are important milestones from the history of embedded system:

• In 1960, embdded system was first used for developing Apollo Guidance
System by Charles Stark Draper at MIT.

• In 1965, Autonetics, developed the D-17B, the computer used in the
Minuteman missile guidance system.

• In 1968, the first embedded system for a vehicle was released.

• Texas Instruments developed the first microcontroller in 1971.

• In 1987, the first embedded OS, VxWorks, was released by Wind River.

• Microsoft's Windows embedded CE in 1996.

• By the late 1990s, the first embedded Linux system appeared.

• The embedded market reach $140 billion in 2013.

• Analysts are projecting an Embedded market larger than $40 billion by
2030.

Components of Embedded Systems

• The embedded systems basics
include the components of
embedded system hardware,
embedded system types and
several characteristics.

• An embedded system has three
main components:
• Embedded system hardware,

• Embedded system software and

• Operating system.

Components of Embedded Systems
Embedded System Hardware

• As with any electronic system, an embedded system requires a
hardware platform on which it performs the operation. Embedded
system hardware is built with a microprocessor or microcontroller.
The embedded system hardware has elements like input output (I/O)
interfaces, user interface, memory and the display. Usually, an
embedded system consists of:
• Power Supply

• Processor

• Memory

• Timers

• Serial communication ports

• Output/Output circuits

• System application specific circuits

Components of Embedded Systems
Embedded System Software

• The embedded system software is written to perform a specific
function. It is typically written in a high level format and then
compiled down to provide code that can be lodged within a non-
volatile memory within the hardware.

• An embedded system software is designed to keep in view of
the three limits:
• Availability of system memory

• Availability of processor’s speed

• When the system runs continuously, there is a need to limit power dissipation
for events like stop, run and wake up.

Components of Embedded Systems
Real Time Operating System

• A system is said to be real time, if it is essential to complete its work
and deliver its service on time. Real time operating system manages
the application software and affords a mechanism to let the
processor run. The Real Time operating system is responsible for
handling the hardware resources of a computer and host applications
which run on the computer.

• An RTOS is specially designed to run applications with very precise
timing and a high amount of reliability. Especially, this can be
important in measurement and industrial automation systems
wherein downtime is costly or a program delay could cause a safety
hazard.

Architecture of the Embedded System
Below is basic architecture of the Embedded System:

1) Sensor:

Sensor helps you to measures the physical quantity and converts it to an electrical signal. It also

stores the measured quantity to the memory. This signal can be ready by an observer or by any

electronic instrument such as A2D converter.

2) A-D Converter:

A-D converter (analog-to-digital converter) allows you to convert an analog signal sent by the sensor

into a digital signal.

3) Memory:

Memory is used to store information. Embedded System majorly contains two memory cells 1) Volatile

2) Non volatile memory.

Architecture of the Embedded System

4) Processor & ASICs:

• This component processes the data to measure the output and
store it to the memory.

5) D-A Converter:

• D-A converter (A digital-to-analog converter) helps you to convert
the digital data fed by the processor to analog data.

6) Actuator:

• An actuator allows you to compare the output given by the D-A
converter to the actual output stored in it and stores the approved
output in the memory.

Architecture of an Embedded system

Now let us see the details of

the various building blocks of

the hardware of an embedded

system.

▪ Central Processing Unit

(CPU)

▪ Memory (Read only

memory and Random

access memory)

▪ Input Devices

▪ Output Devices

▪ Communication interfaces

▪ Application specific circuitry

Embedded System Block Diagram

Significance of Embedded System
• Due to their compact size, low cost and simple design aspects made

embedded systems very popular and encroached into human lives and
have become indispensable.

• They are found everywhere from kitchen ware to space craft.

• What makes embedded systems different?

• Real-time operation

• size

• cost

• time

• reliability

• safety

• energy

• security

Important terminologies used in embedded system
• Now in this Embedded Systems tutorial, we will cover some important terms used in

embedded system.

• Reliability: This measure of the survival probability of the system when the function is
critical during the run time.

• Fault-Tolerance: Fault-Tolerance is the capability of a computer system to survive in the
presence of faults.

• Real-Time:
• Embedded system must meet various timing and other constraints. They are imposed on it by the

real-time natural behavior of the external world.
• For example, an airforce department which keeps track of incoming missile attacks must precisely

calculate and plan their counter-attack due to hard real-time deadline. Otherwise, it'll get
destroyed.

• Flexibility:
• It's building systems with built-in debugging opportunities which allows remote maintenance.
• For example, you are building a spacecraft which will land on another planter to collect various

types of data and send collected detail back to us. If this spacecraft went insane and lost the
control, we should be able to make some important diagnostic. So, flexibility is vital while
designing an embedded system.

• Portability:
• Portability is a measure of the ease of using the same embedded software in various

environments. It requires generalized abstractions between the application program logic itself
and the low-level system interfaces.

Characteristics of Embedded system

Characteristics of Embedded system
• Embedded Systems are task specific. They do the same task repeatedly /continuously

over their lifetime. An mp3 player will function only as an mp3 player.

• Embedded systems are created to perform the task within a certain time frame. It must
therefore perform fast enough. A car’s brake system, if exceeds the time limit, may cause
accidents.

• They have minimal or no user interface (UI). A fully automatic washing machine works on
its own after the programme is set and stops once the task is over.

• Some embedded systems are designed to react to external stimuli and react accordingly.
A thermometer, a GPS tracking device.

• Embedded systems are built to achieve certain efficiency levels. They are small sized, can
work with less power and are not too expensive.

• Embedded systems cannot be changed or upgraded by the users. Hence, they must rank
high on reliability and stability. They are expected to function for long durations without
the user experiencing any difficulties.

• Microcontroller or microprocessors are used to design embedded systems.

• Embedded systems need connected peripherals to attach input & output devices.

• The hardware of an embedded-system is used for security and performance. The
Software is used for features.

Characteristics of Embedded system
• Single-functioned − An embedded system usually performs a specialized operation and

does the same repeatedly. For example: A pager always functions as a pager.

• Tightly constrained − All computing systems have constraints on design metrics, but
those on an embedded system can be especially tight. Design metrics is a measure of an
implementation's features such as its cost, size, power, and performance. It must be of a
size to fit on a single chip, must perform fast enough to process data in real time and
consume minimum power to extend battery life.

• Reactive and Real time − Many embedded systems must continually react to changes in
the system's environment and must compute certain results in real time without any
delay. Consider an example of a car cruise controller; it continually monitors and reacts
to speed and brake sensors. It must compute acceleration or de-accelerations repeatedly
within a limited time; a delayed computation can result in failure to control of the car.

• Microprocessors based − It must be microprocessor or microcontroller based.

• Memory − It must have a memory, as its software usually embeds in ROM. It does not
need any secondary memories in the computer.

• Connected − It must have connected peripherals to connect input and output devices.

• HW-SW systems − Software is used for more features and flexibility. Hardware is used for
performance and security.

Characteristics of Embedded system

Classification of Embedded Systems

Embedded systems can be classified into different

types based on performance, functional

requirements and performance of

the microcontroller.

Based on functionality and performance

requirements, embedded systems are classified

as :

➢ Stand-alone Embedded Systems

➢ Real-time Embedded Systems

➢ Networked Information Appliances

➢ Mobile Devices
Embedded Systems are classified into three types

based on the performance of

the microcontroller such as

➢ Small scale embedded systems

➢ Medium scale embedded systems

➢ Sophisticated embedded systems

Classification of Embedded Systems
Based on functionality

Stand Alone Embedded Systems

➢Stand alone embedded systems do not require a host system like a
computer, it works by itself. It takes the input from the input ports either
analog or digital and processes, calculates and converts the data and gives
the resulting data through the connected device-Which either controls,
drives and displays the connected devices.

➢Examples for the stand alone embedded systems are mp3 players, digital
cameras, video game consoles, microwave ovens and temperature
measurement systems.

Real Time Embedded Systems

• A real time embedded system is defined as, a system which gives a
required o/p in a particular time. These types of embedded systems follow
the time deadlines for completion of a task.

• Real time embedded systems are classified into two types such as soft and
hard real time systems.

Classification of Embedded Systems
Based on functionality

Networked Embedded Systems

➢These types of embedded systems are related to a network to access the
resources. The connected network can be LAN, WAN or the internet. The
connection can be any wired or wireless. This type of embedded system is
the fastest growing area in embedded system applications. The embedded
web server is a type of system wherein all embedded devices are
connected to a web server and accessed and controlled by a web browser.

➢Example for the LAN networked embedded system is a home security
system wherein all sensors are connected and run on the protocol TCP/IP

• Mobile Embedded Systems

Mobile embedded systems are used in portable embedded devices like cell
phones, mobiles, digital cameras, mp3 players and personal digital
assistants, etc. The basic limitation of these devices is the other resources
and limitation of memory.

Classification of Embedded Systems
Based on the performance

• Small Scale Embedded Systems

➢These types of embedded systems are designed
with a single 8 or 16-bit microcontroller, that may
even be activated by a battery.

➢Little hardware and software complexity.

➢Usually “C” is used for developing these system.

➢The need to limit power dissipation when system
is running continuously.

➢Programming tools: For developing embedded
software for small scale embedded systems, the
main programming tools are an editor,
assembler, cross assembler and integrated
development environment (IDE).

Classification of Embedded Systems
Based on the performance

• Medium Scale Embedded Systems

➢These types of embedded systems design
with a single or 16 or 32 bit
microcontroller, (Reduced Instructions Set
Computers)RISCs or DSPs.

➢These types of embedded systems have
both hardware and software complexities.

➢Programming tools:For developing
embedded software for medium scale
embedded systems, the main
programming tools are C, C++, JAVA, Visual
C++, RTOS, debugger, source code
engineering tool, simulator and IDE.

Classification of Embedded Systems
Based on the performance

• Sophisticated Embedded Systems

➢These types of embedded systems have enormous
hardware and software complexities, that may
need ASIPs, IPs, PLAs, scalable or configurable
processors.

➢They are used for cutting-edge applications that
need hardware and software Co-design
and components which have to assemble in the
final system.

• Constrained by the processing speed available in
their hardware units.

• Programming Tools: For these systems may not be
readily available at a reasonable cost or may not be
available at all. A compiler or retargetable compiler
might have to be developed for this.

Purpose of an Embedded System

Each Embedded system is designed to serve the purpose of any

one or a combination of the following tasks.

1.Data Collection/ Storage/Representation

2.Data Communication

3.Data (Signal) Processing

4.Monitoring

5.Control

6.Application Specific user interface

Purpose of an Embedded System

1. Data Collection/ Storage/Representation
1. Data collection is usually done for storage, analysis, manipulation and

transmission.

2. The term “Data” refers all kinds of information, viz, text, voice, Image,
electrical signals and other measurable quantities.

3. Data can be either analog (continues) or Digital (discrete).

4. Embedded system with analog data capturing techniques collect data
directly in the form of analog and converts the analog signal to digital
signal by using A/D converters and then collect the binary equivalent of
the analog data.

5. If the signal is digital it can be directly captured without any additional
interface by digital embedded system.

6. The collected data may be stored directly in the system or may be
transmitted to other systems or it may be progressed by the system or it
may be deleted instantly after giving a meaningful representation.

Purpose of an Embedded System
• The digital camera is a typical example of an embedded system with

data collection/storage/representation of data.

• Images are captured and the captured image may be stored with in
the memory of the camera. The captured image can also be
presented to the user through a LCD display unit.

Purpose of an Embedded System
2. Data Communication

▪ Embedded data

communication

systems are

developed in

applications ranging

from complex satellite

communication

systems to simple

home networking

systems.

Purpose of an Embedded System
3. Data Processing

• The data collected by embedded system may be used for various
kinds of signal processing.

• A digital hearing aid is a typical example of an embedded system
employing data processing.

Purpose of an Embedded System
4. Monitoring

▪ All embedded products coming under the medical domain are with monitoring

functions only. They are used for determining the state of some variables using

input sensors.

▪ A very good example is the electro cardiogram (ECG) machine for monitoring the

heartbeat of patient.

Purpose of an Embedded System
5. Control

➢Embedded system with control

functionalities impose control over some

variables according to the input variables.

➢A system with control functionality contains

both sensors and actuators.

➢ Sensors are inputs ports for capturing the

changes in environment variables or

measuring variables.

➢Actuators are output ports are controlled

according to the changes in input variable.

Purpose of an Embedded System
6. Application Specific user interface

❑These are embedded systems with

application specific user interfaces like

buttons, switches, keypad, lights, bells,

display units, etc.

❑Mobile phone is an example for this, in

mobile phone the user interface is provided

through the keyboard, graphic LCD module,

system speaker, vibration alert, etc….

Applications of embedded system
Some of the major Application Areas of Embedded System

Applications of embedded system

Applications of embedded system

Embedded systems are used in different applications like automobiles, telecommunications, smart

cards, missiles, satellites, computer networking and digital consumer electronics.

Applications of embedded system

• Embedded Systems in Automobiles and in telecommunications

• Motor and cruise control system

• Body or Engine safety

• Entertainment and multimedia in car

• E-Com and Mobile access

• Robotics in assembly line

• Wireless communication

• Mobile computing and networking

• Embedded Systems in Smart Cards, Missiles and Satellites

• Security systems

• Telephone and banking

• Defense and aerospace

• Communication

Applications of embedded system

• Embedded Systems in Peripherals & Computer Networking

• Displays and Monitors

• Networking Systems

• Image Processing

• Network cards and printers

• Embedded Systems in Consumer Electronics

• Digital Cameras

• Set top Boxes

• High Definition TVs

• DVDs

Features and Attributes of Embedded System

Features of an Embedded system
• Embedded systems do a very specific task, they cannot be programmed to do different

things.

• Embedded systems have very limited resources, particularly the memory. Generally, they
do not have secondary storage devices such as the CDROM or the floppy disk.

• Embedded systems have to work against some deadlines. A specific job has to be
completed within a specific time. In some embedded systems, called real-time systems,
the deadlines are stringent. Missing a dead line may cause a catastrophe – loss of life or
damage to property.

• Embedded systems are constrained for power, As many embedded systems operate
through a battery, the power consumption has to be very low.

• Embedded systems need to be highly reliable. Once in a while, pressing ALT-CTRL-DEL is
OK on your desktop, but you cannot afford to reset your embedded system.

• Some embedded systems have to operate in extreme environmental conditions such as
very high temperatures and humidity.

• Embedded systems that address the consumer market (for example electronic toys) are
very cost-effective. Even a reduction of Rs.10 is lot of cost saving, because thousands or
millions systems may be sold.

• Unlike desktop computers in which the hardware platform is dominated by Intel and the
operating system is dominated by Microsoft, there is a wide variety of processors and
operating systems for the embedded systems. So, choosing the right platform is the most
complex task .

Attributes of Embedded System

Quality Attributes of Embedded Systems

• Quality attributes are the non-functional requirements that need to
be documented properly in any system design.

• If the quality attributes are more concrete and measurable, it will give
a positive impact on the system development process and the end
product.

• The various quality attributes that needs to be addressed in any
embedded system development are broadly classified into two,
namely
• i. Operational Quality Attributes

• ii. Non-Operational Quality Attributes

Quality Attributes of Embedded Systems

• Operational Quality Attributes

• The operational quality attributes represent the relevant quality attributes
related to the embedded system when it is in the operational mode or
‘online’ mode.

• The important quality attributes coming under this category are listed
below:

i. Response

ii. Throughput

iii. Reliability

iv. Maintainability

v. Security

vi. Safety

Operational Quality Attributes
i. Response

• Response is a measure of quickness of the system.

• It gives you an idea about how fast your system is tracking the input
variables.

• Most of the embedded system demand fast response which should be real-
time.

• Ex. An embedded system deployed in flight control application should
respond in a Real Time manner.

• Any response delay in the system will create potential damages to the
safety of the flight as well as the passengers.

• It is not necessary that all embedded systems should be Real Time in
response.

• For example, the response time requirement for an electronic toy is not at
all time-critical.

Operational Quality Attributes
ii. Throughput

• Throughput deals with the efficiency of system.

• It can be defined as rate of production or process of a defined process over
a stated period of time.

• The rates can be expressed in terms of units of products, batches
produced, or any other meaningful measurements.

• In case of card reader like the ones used in buses, throughput means how
much transactions the Reader can perform in a minute or hour or day.

• Throughput is generally measured in terms of ‘Benchmark’. A ‘Benchmark’
is a reference point by which something can be measured.

• Benchmark can be a set of performance criteria that a product is expected
to meet or a standard product that can be used for comparing other
products of the same product line.

Operational Quality Attributes

iii. Reliability

• Reliability is a measure of how much percentage you rely upon the
proper functioning of the system or what is the % susceptibility of the
system to failure.

• Mean Time Between Failures (MTBF) and Mean Time To Repair
(MTTR) are the terms used in defining system reliability.

• MTBF gives the frequency of failures in hours/weeks/months.

• MTTR specifies how long the system is allowed to be out of order
following a failure.

• For an embedded system with critical application need, it should be
of the order of minutes.

Operational Quality Attributes
iv. Maintainability

• Maintainability deals with support and maintenance to the end user or client in case of
technical issues and product failures or on the basis of a routine system checkup.

• Reliability and maintainability are considered as two complementary disciplines. A more
reliable system means a system with less corrective maintainability requirements and
vice versa.

• Maintainability can be classified into two types:
• 1. Scheduled or Periodic Maintenance (Preventive Maintenance)
 An inkjet printer uses ink cartridges, which are consumable components and as per the printer

manufacturer the end use should replace the cartridge after each ‘n’ number of printouts to get
quality prints.

• 2. Maintenance to Unexpected Failures (Corrective Maintenance)
 If the paper feeding part of the printer fails the printer fails to print and it requires immediate

repairs to rectify this problem. Hence it is obvious that maintainability is simply an indication of
the availability of the product for use.

 In any embedded system design, the ideal value for availability is expressed as
 𝑨𝒊 = 𝑴𝑻𝑩𝑭/(𝑴𝑻𝑩𝑭 + 𝑴𝑻𝑻𝑹)

• Where Ai=Availability in the ideal condition, MTBF=Mean Time Between Failures, and
MTTR= Mean Time To Repair

Operational Quality Attributes

• v. Security

• ‘Confidentially’, ‘Integrity’, and ‘Availability’ are three major measures of
information security.

• ‘Confidentially’ deals with the protection of data and application from
unauthorized disclosure.

• ‘Integrity’ deals with the protection of data and application from
unauthorized modification.

• ‘Availability’ deals with protection of data and application from
unauthorized users.

• Certain embedded systems have to make sure they conform to the security
measures.

• Ex. An electronic safety Deposit Locker can be used only with a pin number
like a password.

Operational Quality Attributes
• vi. Safety

• Safety deals with the possible damages that can happen to the
operators, public and the environment due to the breakdown of an
embedded system or due to the emission of radioactive or hazardous
materials from the embedded products.

• The breakdown of an embedded system may occur due to a hardware
failure or a firmware failure.

• Safety analysis is a must in product engineering to evaluate the
anticipated damages and determine the best course of action to bring
down the consequences of the damages to an acceptable level.

Non Operational Attributes

• Non Operational Attributes

• The quality attributes that needs to be addressed for the product
‘not’ on the basic of operational aspects are grouped under this
category.

• The important quality attributes coming under this category are listed
below:

i. Testability & Debug-ability

ii. Evolvability

iii. Portability

iv. Time to prototype and market

v. Per unit and total cost

Non Operational Attributes
i. Testability & Debug-ability

• Testability deals with how easily one can test his/her design, application
and by which means he/she can test it.

• For an embedded product, testability is applicable to both the embedded
hardware and firmware.

• Debug-ability is a means of debugging the product as such for figuring out
the probable sources that create unexpected behavior in the total system.

• Debug-ability has two aspects in the embedded system development
context, namely, hardware level debugging and firmware level debugging.

• Hardware debugging is used for figuring out the issues created by
hardware problems whereas firmware debugging is employed to figure out
the probable errors that appear as a result of flaws in the firmware.

Non Operational Attributes
ii. Evolvability

• Evolvability is a term which is closely related to Biology.

• Evolvability is referred as the non-heritable variation.

• For an embedded system, the quality attribute ‘Evolvability’ refers to the
ease with which the embedded product (including firmware and hardware)
can be modified to take advantage of new firmware or hardware
technologies.

iii. Portability

• Portability is a measure of ‘system independence’.
• An embedded product can be called portable if it is capable of functioning

in various environments, target processors/controllers and embedded
operating systems.

• A standard embedded product should always be flexible and portable.

Non Operational Attributes
iv. Time-to-Prototype and Market

• Time-to-market is the time elapsed between the conceptualization of
a product and the time at which the product is ready for selling (for
commercial product) or use (for non-commercial products).

• The commercial embedded product market is highly competitive and
time to market the product is a critical factor in the success of a
commercial embedded product.

• Product prototyping helps a lot in reducing time-to-market.

Non Operational Attributes

v. Per Unit Cost and Revenue

• Cost is a factor which is closely monitored by both end user (those who buy
the product) and product manufacturer (those who build the product).

• Cost is a highly sensitive factor for commercial products.

• Proper market study and cost benefit analysis should be carried out before
taking decision on the per unit cost of the embedded product.

• When the product is introduced in the market, for the initial period the
sales and revenue will be low.

• There won’t be much competition when the product sales and revenue
increase.

• During the maturing phase, the growth will be steady and revenue reaches
highest point and at retirement time there will be a drop in sales volume.

Advantages of Embedded System
The advantages of Embedded Systems are:

• They are convenient for mass production. This results in low price per piece.

• These systems are highly stable and reliable.

• Embedded systems are made for specific tasks.

• The embedded systems are very small in size, hence can be carried and loaded
anywhere.

• These systems are fast. They also use less power.

• The embedded systems optimize the use or resources available.

• They improve the product quality.

• Easily Customizable

• Low power consumption

• Low cost

• Enhanced performance

Disadvantages of Embedded System
The disadvantages of Embedded Systems are as follows:

• Once configured, these systems cannot be changed. Hence, no
improvement or upgradation on the ones designed and created can
be made.

• They are hard to maintain. It is also difficult to take a back-up of
embedded files.

• Troubleshooting is difficult for embedded systems. Transferring data
from one system to another is also quite problematic.

• Because these systems are made for specific tasks, hardware is
limited.

• High development effort

• Larger time to market

Challenges in Embedded System
• Challenges of Embedded Software Development

• Embedded software is always a constituent of a larger system, for instance, a digital
watch, a smartphone, a vehicle or automated industrial equipment. Such embedded
systems must have real-time response under all circumstances within the time specified
by design and operate under the condition of limited memory, processing power and
energy supply. Moreover, embedded software must be immune to changes in its
operating environment – processors, sensors, and hardware components may change
over time. Other challenging requirements to embedded software are portability and
autonomy.

• Challenge #1: Stability

• Stability is of paramount importance. Unexpected behavior from an embedded system is
inadmissible and poses serious risks. End users demand that embedded systems must
have uniform behavior under all circumstances and be able to operate durably without
service.

• Challenge #2: Safety

• Safety is a special feature of embedded systems due to their primary application
associated with lifesaving functionality in critical environments. Software Development
Life Cycle (SDLC) for embedded software is characterized by more strict requirements
and limitations in terms of quality, testing, and engineering expertise.

Challenges in Embedded System
• Challenge #3: Security

• Security became a burning issue in the digital world. The related risks grow
exponentially, especially so for IoT devices gaining popularity worldwide
and becoming more interconnected to each other. Because modern home
appliances like electric cookers, refrigerators and washing machines have
connectivity feature integrated by default, Internet of Things now is
exposed to a serious risk of hacking attacks.

• Challenge #4: Launch Phase

• Time-to-market and time-to-revenue have always been tough indicators
in embedded system development, especially in the IoT segment. That is
why the apps and platforms supposed to support zillions of IoT devices
expected to appear by 2020 still are in their concept stage. Fabrication of
hardware components housing embedded systems require extreme
integration and flexibility due to very fast development of IoT industry. In
addition, taking into account longer IoT device lifespan, future updates and
releases become an issue for component designers.

https://www.infopulse.com/services/information-security-services/
https://www.infopulse.com/case-studies/embedded-software-rd-for-us-based-fabless-semiconductor-manufacturer/

Challenges in Embedded System
• Challenge #5: Design Limitations

• The challenges in design of embedded systems have always been in the same limiting requirements for
decades:

• Small form factor;

• Low energy;

• Long-term stable performance without maintenance.

• The market demands from designers to pack more processing power and longer battery life into smaller
spaces, which is often a tradeoff. Finally, depending on applications in IoT, there is a growing demand for
manufacture of very scalable processor families ranging from cheap and ultra-low-power to maximum
performance and highly configurable processors with forward-compatible instruction set. There is similar
demand for increased performance of system buses and internal/external memory caches.

• Challenge #6: Compatibility and Integrity

• Gartner Group estimation shows that, presently, most of the apps in the market are launched by businesses
younger than 3 years old. With all their probable expertise in software development, many of them lack
hands-on experience in implementing and updating their applications in IoT environment, especially with
regard to security implications.

• Further expansion of IoT devices on the background of their connectivity puts more pressure on their
adaptability. Users must be capable of administering the app through a simple user interface via all available
channels including over-the-air firmware updates, which needs extreme compatibility across the entire
ecosystem.

• Integrity becomes a function of security. To protect the IoT from malicious attacks or compromising, security
must be implemented within each device at every level: the end node, gateway, cloud, etc.

https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf
https://www.infopulse.com/case-studies/ota-software-update-solution-concept-for-next-gen-vehicles/

Recent trends in embedded system

Artificial Intelligence

• The market growth for Artificial Intelligence (AI) technologies is
unstoppable. We are in a virtual race to reach the end-line of this track.
There is a huge upsurge in AI- embedded development with exuberant
investments and wide-scale adoption by market giants and numerous
startups. As per an estimate, investment in artificial intelligence was set to
grow to a stratospheric 300% in 2017. Set to grow with a CAGR of 55.1%
over 2016-2020, AI and cognitive systems will drive more than $47B
investments by 2020 says an IDC report.

• Hot-selling AI trends in action are: virtual assistants, natural language
generation, speech recognition, biometrics, AI-optimized hardware and
robotic automation. Like others, this road has its own share of speed
breakers. For technology adopters, there is ambiguity about what virtual
reality and artificial intelligence can be most used for, modernized data
management platform, and lack of necessary skills and talent. One
Solution- you can overcome with a highly experienced and war-tested
partner to make a stomping difference.

https://www.forbes.com/sites/gilpress/2016/11/01/forrester-predicts-investment-in-artificial-intelligence-will-grow-300-in-2017/#314fb3555509

Recent trends in embedded system

Wearable Electronics

• The bubble is about to burst. The hype around wearable technology
has peaked. With an annual growth rate of 18% (at least till 2021),
market players don’t leverage its optimum value- as Wearable
technology is yet to break boundaries of being a fad.

• Pebble, FitBit, or the recent Apple Watch- this industry needs to be
revolutionized with superior battery performance, enhanced
functionalities and diversified offerings.

http://www.businessinsider.com/fitbit-struggles-show-stagnant-wearables-market-2017-1?IR=T

Recent trends in embedded system

Retail

• Embedded application development is on haute couture of online and
offline retail industry. Consumers and business owners will be hugely
invested in embedded technology, especially IoT.

• Allowing laser-focused opportunities to reach a wider market, market
leading companies will eagerly use ‘tons’ of data for sensor-based
analytics, inventory management, manage losses from theft, and
reach out customers in different ways.

• Move beyond drone-delivery systems and magic mirrors. The new
wave in embedded-sensor driven retail shopping will drastically
change the way- consumers shop.

https://www.fastcompany.com/3060448/smart-mirrors-might-be-the-future-of-in-store-customer-analytics

Recent trends in embedded system

Healthcare

• The era of tiny and smart wearables has just begun- Healthcare is on
path to become patient-centric. There is a mad rush of patients to Big
Data driven healthcare systems- and it potentially changes the way
people interact, access and pay for services.

• Wearable gadgets are a common buy now as it brings immense
abilities to monitor, track and alert users about various health-related
symptoms.

• To keep buoyancy of the industry, hospitals and clinics are making the
quickest sprint to embedded technology-based innovations like
sensory tattoos, surgeon micro bots, medical tablets and bedside
terminals.

Recent trends in embedded system
Internet of Things

• Intelligent Internet of Things is like The God of Small Things in embedded
applications development, it reigns supreme. As per a mammoth
prediction by Gartner, about 8.4 Billion connected “Things” will be in use
by the end of this year. Though IoT-specific hardware drives many
applications, the success is based on its software.

• In 2018, we expect tectonically shift in functionality, safety and security of
IoT-enabled devices. Categorized into three wide domains: robots, drones
and smart vehicles, IoT still has a lot of unexplored room and skills to
capture newer markets with IoT exhibiting intelligence in homes, offices,
factories and healthcare units.

• Make embedded application systems a driver for your business growth. A
versatile partner with diverse domain expertise, superior technical
proficiency, and cost effective engineering will save the day.

Recent trends in embedded system

Building Automation

• Automation systems for smart buildings and HVAC utilize embedded software
and hardware and the sector and should develop rapidly in the coming years.

• As we move into the era of smart buildings and smart cities, embedded
intelligence will be an integral component of these smart systems. Building
automation has been based primarily on monitoring and maintaining
environmental conditions, lighting, and access control.

• As the systems become smarter, smart building functionality will likely extend
into predictive and prescriptive systems that determine the optimal conditions.
Ultimately, the goal is to move to completely autonomous and self-healing
systems.

• These systems will be based on AI and machine learning, all predicated on
embedded intelligence. The smart building industry has embraced the concept of
the digital twin, using intelligent sensors to merge physical operations with virtual
engineering models.

Recent trends in embedded system
Embedded Systems in the Industries

• Embedded systems have been a staple technology in industries like
aerospace & defense, automotive, medical devices, communication,
and industrial automation for decades.

• As processor architecture evolved and more computing power could
be embedded in systems and devices, the intelligence and capabilities
of these systems increased exponentially.

• This has allowed the products that have traditionally used embedded
systems to become more intelligent and robust, and enabled products
in other industries (consumer goods, appliances, sporting goods, etc.)
to become smart and connected. Embedded systems are becoming
an integral component of almost everything in our lives.

Recent trends in embedded system
• With the gadgets on the planet becoming more “connected and

smart”, it is the instinctual for companies to identify matured tech
partners to master this hardware groomed software engineered
embedded world.

• Make embedded development a driver for your business growth. A
versatile partner with diverse domain expertise, superior technical
proficiency, and cost effective engineering will save the day.

Recent trends in embedded system

Other Various recent trends in embedded system are :-

• 1. SoC (System on a Chip)

• 2. Wireless Technology

• 3. Multi-core Processor

• 4. Multi-language support

• 5. User interface

• 6. Use of open Source Technology

• 7. Inter-operatability

• 8. Automation

• 9. Security

• 10.Power consumption

Recent trends in embedded system
1. SoC (System on a Chip)

•A system on a chip (SoC) is an
integrated circuit (IC) that
integrates all components of a
computer or other electronic
system into a single chip.

•SoCs are very common in the
mobile electronics market
because of their low power
consumption. A typical
application is in the area of
embedded systems.

Recent trends in embedded system
2.Wireless Technology

➢The term "wireless" refers, in the
most basic and obvious sense, to
communications sent without wires
or cables.

➢It is a broad term that encompasses
all sorts of wireless technologies and
devices, including cellular
communications, networking
between computers with wireless
adapters, and wireless computer
accessories.

➢Wireless communications travel
over the air via electromagnetic
waves (radio frequencies, infrared,
satellite, etc).

Recent trends in embedded system
3.Multi-core Processor

• A multi-core processor is an
integrated circuit (IC) to which
two or more processors have
been attached for enhanced
performance, reduced power
consumption, and more
efficient simultaneous
processing of multiple tasks.

Recent trends in embedded system
4.Multi-language support

• Embedded system
provides us facility of
multiple languages. For
example ATM is a typical
example of embedded
system.

• In ATM there are three
types of languages are
used like Hindi, Punjabi,
English.

Recent trends in embedded system
5.User interface

• Visual part of computer
application or operating
system through which a
user interacts with a
computer or a software.

• It determines how
commands are given to the
computer or the program
and how information is
displayed on the screen.

Recent trends in embedded system
6.Use of open Source Technology

• Open source technology refers
to a program in which the
source code is available to the
general public for use and/or
modification from its original
design free of charge, i.e., open.

• Open source code is typically
created as a collaborative effort
in which programmers improve
upon the code and share the
changes within the community.

Recent trends in embedded system
7.Inter-operatability

• Ability to work with each other. In the
loosely coupled environment of a
service-oriented architecture,
separate resources don't need to
know the details of how they each
work, but they need to have enough
common ground to reliably exchange
messages without error or
misunderstanding.

• Interoperability is when services can
interact with each other without
encountering such problems.

Recent trends in embedded system
8.Automation

• Automation or automatic control, is the
use of various control systems for
operating equipment such as machinery,
processes in factories, switching in
telephone networks, steering and
stabilization of ships, aircraft and other
applications with minimal or reduced
human intervention. Some processes
have been completely automated.

• The biggest benefit of automation is that
it saves labor, however, it is also used to
save energy and materials and to
improve quality, accuracy and precision.

Recent trends in embedded system
9.Security

• Secure Design Capture system security
and performance requirements and
develop a secure architecture

• Threat Model Analysis Ensure your
system is analyzed without bias and
based on expert knowledge of the
attack landscape

• Software & Code Testing Uncover
serious problems early and avoid crash-
causing defects in code

• Crypto Implementation Leverage our
expertise to ensure crypto is
implemented securely

Recent trends in embedded system
10.Power consumption

➢ Power consumption has

traditionally been something

influenced only by hardware

developers. But power

consumption depends not only

on the hardware, but also on

how it is used and how it is

controlled by the system

software.

➢ Through power consumption – it

becomes possible to test and
tune for power optimisation.

Selection of Processors
• Different systems require different processor features

• The processor is selected from the following considerations –
• Instruction Set

• Maximum bits in an operand in an operation

• Processing Speed

• Ability to solve the complex algorithms

• A processor gives high computing performance when it has
• Pipeline and Superscalar architecture

• Pre-fetch cache unit, caches, register files and MMU

• RISC core architecture

• A processor with register windows provides fast context switching in a
multitasking system

• Processor has auto shut down features for its units

• A processor with burst mode accesses external memories fast

Selection of Processors
• With numerous kinds of processors with various design philosophies

available at our disposal for using in our design, following
considerations need to be factored during processor selection for an
embedded system.

• Performance Considerations

• Power considerations

• Peripheral Set

• Operating Voltage

• Specialized Processing Units

• Memory

• Cost

Selection of Processors
Performance considerations

• The first and foremost consideration in selecting the processor is its performance. The
performance speed of a processor is dependent primarily on its architecture and its
silicon design. Evolution of fabrication techniques helped packing more transistors in
same area there by reducing the propagation delay. Also presence of cache reduces
instruction/data fetch timing. Pipelining and super-scalar architectures further improves
the performance of the processor. Branch prediction, speculative execution etc are some
other techniques used for improving the execution rate. Multi-cores are the new
direction in improving the performance.

• Rather than simply stating the clock frequency of the processor which has limited
significance to its processing power, it makes more sense to describe the capability in a
standard notation. MIPS (Million Instructions Per Second) or MIPS/MHz was an earlier
notation followed by Dhrystones and latest EEMBC’s CoreMark. CoreMark is one of the
best ways to compare the performance of various processors.

• Processor architectures with support for extra instruction can help improving
performance for specific applications. For example, SIMD (Single Instruction/Multiple
Data) set and Jazelle – Java acceleration can help in improving multimedia and JVM
execution speeds.

• So size of cache, processor architecture, instruction set etc has to be taken in to account
when comparing the performance.

Selection of Processors
Power considerations

• Increasing the logic density and clock speed has adverse impact on power
requirement of the processor. A higher clock implies faster charge and
discharge cycles leading to more power consumption. More logic leads to
higher power density there by making the heat dissipation difficult. Further
with more emphasis on greener technologies and many systems becoming
battery operated, it is important the design is for optimal power usage.

• Techniques like frequency scaling – reducing the clock frequency of the
processor depending on the load, voltage scaling – varying the voltage
based on load can help in achieving lower power usage. Further
asymmetric multiprocessors, under near idle conditions, can effectively
power off the more powerful core and load the less powerful core for
performing the tasks. SoC comes with advanced power gating techniques
that can shut down clocks and power to unused modules.

Selection of Processors
Peripheral Set

• Every system design needs, apart from the processor, many other peripherals
for input and output operations. Since in an embedded system, almost all the
processors used are SoCs, it is better if the necessary peripherals are available
in the chip itself.

• This offers various benefits compared to peripherals in external IC’s such as
optimal power architecture, effective data communication using DMA, lower
BoM etc. So it is important to have peripheral set in consideration when
selecting the processor.

Selection of Processors
Operating Voltage

• Each and every processor will have its own operating voltage
condition. The operating voltage maximum and minimum ratings will
be provided in the respective data sheet or user manual.

• While higher end processors typically operate with 2 to 5 voltages
including 1.8V for Cores/Analogue domains, 3.3V for IO lines, needs
specialized PMIC devices, it is a deciding factor in low end micro-
controllers based on the input voltage. For example it is cheaper to
work with a 5V micro-controller when the input supply is 5V and a 3.3
micro-controllers when operated with Li-on batteries.

Selection of Processors
Specialized Processing Units

• Apart from the core, presence of various co-processors and specialized processing units
can help achieving necessary processing performance. Co-processors execute the
instructions fetched by the primary processor thereby reducing the load on the primary.
Some of the popular co-processors include

• Floating Point Co-processor:

• RISC cores supports primarily integer only instruction set. Hence presence of a FP co-
processor can be very helpful in application involving complex mathematical operations
including multimedia, imaging, codecs, signal processing etc.

• Graphic Processing Unit:

• GPU(Graphic Processing Unit) also called as Visual processing unit is responsible for
drawing images on the frame buffer memory to be displayed. Since human visual
perception needed at-least 16 Frames per second for a smooth viewing, drawing for HD
displays involves a lot of data bandwidth. Also with increasing graphic requirements such
as textures, lighting shaders etc, GPU’s have become a mandatory requirements for
mobile phones, gaming consoles etc.

• Various GPU’s like ARM’s MALI, PowerVX, OpenGL etc are increasing available in higher
end processors. Choosing the right co-processor can enable smooth design of the
embedded application.

Selection of Processors
Memory

• You will have to go for a processor that is able to support the entirety
of your software program on its onboard memory. Remember: most
microcontrollers have a limited amount of onboard address space,
which is why you need to actively search for a solution that can
accommodate your program.

Selection of Processors
Digital Signal Processors

• DSP is a processor designed specifically for signal processing applications.
Its architecture supports processing of multiple data in parallel. It can
manipulate real time signal and convert to other domains for processing.
DSP’s are either available as the part of the SoC or separate in an external
package. DSP’s are very helpful in multimedia applications. It is possible to
use a DSP along with a processor or use the DSP as the main processor
itself.

Price/Cost

• Various considerations discussed above can be taken in to account when a
processor is being selected for an embedded design. It is better to have
some extra buffer in processing capacities to enable enhancements in
functionality without going for a major change in the design. While
engineers (especially software/firmware engineers) will want to have all
the functionalities, price will be the determining factor when designing the
system and choosing the right processor.

Embedded Firmware design approaches and
development languages

Introduction

➢Embedded firmware is responsible for controlling various peripherals of the embedded hardware
and generating responses in accordance with the functional requirements mentioned in the
requirements for the particular product

➢Firmware is considered as the master brain of the embedded systems

➢ Imparting intelligence to an embedded system is a one time process and it can happens at any
stage of the design

➢Once the intelligence is imparted to the embedded product, by embedding the firmware in the
hardware, the product start functioning properly and will continue serving the assigned task till
hardware breakdown occurs or a corruption in embedded firmware occurs

➢Designing an embedded firmware requires understanding of embedded product hardware like,
various component interfacing, memory map details I/O port details, configuration and register
details of various hardware chips used and some programming language.

➢Embedded firmware development process start with conversion of firmware requirements into a
program model using modeling tools like UML or flow chart based representation

➢UML diagram gives diagrammatic representation of the decision items to be taken and the task to
be performed

➢Once the program modeling is created, next step is the implementation of the task and actions by
capturing the model using a language which is understandable by the target processor

Embedded Firmware design approaches

➢Following gives an overview of the various steps involved in the
embedded firmware design and development
➢Firmware design approaches depends on the

➢Complexity of the function to be performed

➢Speed of operation required .. –Etc

➢Two basic approaches for firmware design
➢1. Conventional Procedure based Firmware Design/Super Loop Design

➢2. Embedded Operating System Based Design

Embedded Firmware design approaches
SUPER LOOP BASED APPROACH

• This approach is applied for the applications that are not time critical
and the response time is not so important

• Similar to the conventional procedural programming where the code
is executed task by task

• Task listed at the top of the program code is executed first and task
below the first task are executed after completing the first task

• It is True procedural one

• In multiple task based systems, each task executed in serial

Embedded Firmware design approaches
SUPER LOOP BASED APPROACH

• Firmware execution flow of this will be as following

• 1.Configure the common parameter and perform initialization for various
hardware components, memory, registers etc.

• 2.Start the first task and execute it

• 3.Execute the second task

• 4.Execute the next task

• 5.….
• 6.….
• 7.Execute the last defined task

• 8.Jump back to the first task and follow the same flow

• From the firmware execution sequence, it is obvious that the order in which the
task to be executed are fixed and they are hard coded in the code itself

Embedded Firmware design approaches
SUPER LOOP BASED APPROACH

• Example of “ Super Loop Based Design” is –Electronic video game toy
containing keypad and display unit

Drawback of Super Loop based Design
• Major drawback of this approach is that any failure in any part of a single

task will affect the total system. If the program hang up at any point while
executing a task, it will remain there forever and ultimately the product will
stop functioning
• Some remedial measures are there

• Use of Hardware and software Watch Dog Timers (WDTs) helps in coming out from the loop
when an unexpected failure occurs or when the processor hang up

• May cause additional hardware cost and firmware overhead

• Another major drawback is lack of real timeliness
• If the number of tasks to be executed within an application increases, the time at

which each task is repeated also increases. This brings the probability of missing out
some events

• For example in a system with keypad, there will be task for monitoring the keypad
connected I/O lines and this need not be the task running while you press the keys

• That is key pressing event may not be in sync with the keypad press monitoring task
within the firmware

• To identify the key press, you may have to press the key for a sufficiently long time
till the keypad status monitoring task is executed internally. – Lead to lack of real
timeliness

Embedded Firmware design approaches
Embedded Operating System Based Approach

• Contains OS, which can be either a General purpose Operating System
(GPOS) or real Time Operating System (RTOS).

• General purpose Operating System (GPOS) based design

➢ GPOS based design is very similar to the conventional PC based
Application development where the device contain an operating system and
you will be creating and running user applications on top of it.

➢ Examples of Microsoft Windows XP OS are PDAs, Handheld devices/
Portable Devices and point of Sale terminals.

Use of GPOS in embedded product merges the demarcation of Embedded
systems and General Purpose systems in terms of OS

➢ For developing applications on the top of the OS , OS supported APIs are
used

➢ OS based applications also requires ‘Driver Software’ for OS based
applications also requires ‘Driver Software’ for different hardware present on
the board to communicate with them

Embedded Firmware design approaches
Embedded Operating System Based Approach

• RTOS based design
• RTOS based design approach is employed in embedded product demanding

Real Time Responses

• RTOS respond in a timely and predictable manner to events

• RTOS contain a real time Kernel responsible for performing pre- emptive multi
tasking scheduler for scheduling the task, multiple thread etc.

• RTOS allows a flexible scheduling of system resources like the CPU and
Memory and offer some way to communicate between tasks

• Examples of RTOS are

 Windows CE, pSOS, VxWorks, ThreadX, Micro C/OS II,Embedded Linux,
Symbian etc…

EMBEDDED FIRMWARE DEVELOPMENT
LANGUAGES

• For embedded firmware development you can use either

• Target processor/controller specific language (Assembly
language) or

• Target processor/ controller independent language (High
level languages) or

• Combination of Assembly and high level language

Languages for Programming Embedded Systems
• Assembly language was the pioneer for programming embedded systems till recently.

• Nowadays there are many more languages to program these systems. Some of the
languages are C, C++, Ada, Forth, and Java together with its new enhancement J2ME.

• The majority of software for embedded systems is still done in C language.

• Recent survey indicates that approximately 45% of the embedded software is still being
done in C language.

• C++ is also increasing its presence in embedded systems. As C++ is based on C language,
thus providing programmer the object oriented methodologies to reap the benefits of
such an approach.

• C is very close to assembly programming and it allows very easy access to underlying
hardware.

• A huge number of high quality compilers and debugging tools are available for the C
language.

• Though C++ is theoretically more efficient than C, but some of its compilers have bugs
due to the huge size of the language. These compilers may cause a buggy execution.

Embedded Firmware Design Languages

• Hopefully, the distinction between software and firmware doesn’t become
less clear once we bring up programming languages. Unfortunately, simply
looking at languages doesn’t help clear up the confusion as these
languages can crossover into the general purpose software domain. Here’s
a short list of some popular languages for software and embedded
firmware development.

• C/C++: C is something of a legacy language for embedded systems and
tends to be preferred over C++.

• Hardware Description Languages (HDLs): The most popular are probably
VHDL or Verilog. If you’re programming an FPGA or designing an ASIC, use
an HDL to define digital logic. SystemVerilog is a good choice if you are
designing a system with extensive digital logic.

• Python/MicroPython: Python is great for software applications, but many
do not prefer it due to the periodic garbage collection operations required,
which may create some latency problems. However, there is such a huge
developer community around Python that developers can access a huge
range of functionality and powerful computing capabilities.

Embedded development life cycle

Separate PPT Enclosed

What is Microcontroller and Microprocessor?

• What is Microcontroller?

• A microcontroller is a single-chip VLSI unit which is also called
microcomputer. It contains all the memory and I/O interfaces needed,
whereas a general-purpose microprocessor needs additional chips to
offered by these necessary functions. Microcontrollers are widely
used in embedded systems for real-time control applications.

• What is a Microprocessor?

• A microprocessor is a single chip semiconductor device. Its CPU
contains a program counter, an ALU a stack pointer, working register,
a clock timing circuit. It also includes ROM and RAM, memory
decoder, and many serial and parallel ports.

Microprocessor and Microcontroller

Difference between Microprocessor and
Microcontroller

Microprocessor Microcontroller

It uses functional blocks like register, ALU, timing, and

control units.

It uses functional blocks of microprocessors like RAM,

timer, parallels I/O, ADC, and DAC.

In Microprocessor, bit handling instruction is less, One or

two types only.

Microcontroller offers many kinds of bit handling

instruction.

Offers rapid movements of code and data between

external memory and microprocessor.

Offers rapid movements of code and data in the

microcontroller.

Helps you to design general purpose digital computers

system.

Helps you to design application-specific dedicated

systems.

It allows you to do multitasking at a time. It is a single task oriented system.

In Microprocessor system, you can decide the number of

memory or I/O ports needed.

In Microcontroller system, the fixed number for memory

or I/O makes a microcontroller ideal to complete the

specific task.

Offers support for external memory and I/O ports, which

makes it heavier and costlier system.

This type of system is lightweight and cheaper compares

to the microprocessor.

External devices need more space, and their power

consumption is quite higher.

This type of system consumes less amount of space, and

power consumption is also very low.

How Embedded system Works?

• The processor may be a microprocessor or microcontroller.
Microcontrollers are simply microprocessors with peripheral
interfaces and integrated memory included. Microprocessors use
separate integrated circuits for memory and peripherals instead of
including them on the chip. Both can be used, but microprocessors
typically require more support circuitry than microcontrollers because
there is less integrated into the microprocessor. The term system on a
chip (SoC) is often used. SoCs include multiple processors and
interfaces on a single chip. They are often used for high-volume
embedded systems. Some example SoC types are the application-
specific integrated circuit (ASIC) and the field-programmable gate
array (FPGA).

https://internetofthingsagenda.techtarget.com/definition/system-on-a-chip-SoC
https://whatis.techtarget.com/definition/ASIC-application-specific-integrated-circuit

How Embedded system Works?

• Often, embedded systems are used in real-time operating
environments and use a real-time operating system (RTOS) to
communicate with the hardware. Near-real-time approaches are
suitable at higher levels of chip capability, defined by designers who
have increasingly decided the systems are generally fast enough and
the tasks tolerant of slight variations in reaction. In these instances,
stripped-down versions of the Linux operating system are commonly
deployed, although other OSes have been pared down to run on
embedded systems, including Embedded Java and Windows IoT
(formerly Windows Embedded).

https://searchdatacenter.techtarget.com/definition/Linux-operating-system
https://www.theserverside.com/definition/EmbeddedJava

How does an embedded system work?

• Embedded systems always function as part of a complete device --
that's what's meant by the term embedded. They are low-cost, low-
power-consuming, small computers that are embedded in other
mechanical or electrical systems. Generally, they comprise a
processor, power supply, and memory and communication ports.
Embedded systems use the communication ports to transmit data
between the processor and peripheral devices -- often, other
embedded systems -- using a communication protocol. The processor
interprets this data with the help of minimal software stored on the
memory. The software is usually highly specific to the function that
the embedded system serves.

References

• https://www.watelectronics.com/classification-of-embedded-systems/

• https://www.slideshare.net/MoeMoeMyint/chapter-3-charateristics-and-
quality-attributes-of-embedded-system

• https://electricalfundablog.com/embedded-system-characteristics-types-
advantages-disadvantages/

• https://www.tutorialspoint.com/embedded_systems/es_overview.htm

• https://www.infopulse.com/blog/challenges-and-issues-of-embedded-
software-development/

• https://radixweb.com/blog/emerging-trends-embedded-systems

• https://www.slideshare.net/ramankhipal3/trends-in-embedded-system-
design

• https://www.arcweb.com/blog/embedded-systems-trends-technologies-0

https://www.watelectronics.com/classification-of-embedded-systems/
https://www.slideshare.net/MoeMoeMyint/chapter-3-charateristics-and-quality-attributes-of-embedded-system
https://www.slideshare.net/MoeMoeMyint/chapter-3-charateristics-and-quality-attributes-of-embedded-system
https://electricalfundablog.com/embedded-system-characteristics-types-advantages-disadvantages/
https://electricalfundablog.com/embedded-system-characteristics-types-advantages-disadvantages/
https://www.tutorialspoint.com/embedded_systems/es_overview.htm
https://www.infopulse.com/blog/challenges-and-issues-of-embedded-software-development/
https://www.infopulse.com/blog/challenges-and-issues-of-embedded-software-development/
https://radixweb.com/blog/emerging-trends-embedded-systems

Embedded Development Life

Cycle (EDLC)

Conceptualization

The conceptualization phase of a project

occurs in the initial design activity when the

scope of the project is drafted and a list of the

desired design features and requirements is

created.

Linear / Waterfall Model

The waterfall development model originates in the manufacturing and

construction industries: highly structured physical environments in which after-

the-fact changes are prohibitively costly, if not impossible. Since no formal

software development methodologies existed at the time, this hardware-oriented

model was simply adapted for software development.

The steps are:

1.Specification.

2.Preliminary design.

3.Design review

4.Detailed design.

5. Design review.

6.Implementation.

7.Review.

Linear / Waterfall Model
Phases:

1) Requirement : In this phase we gather necessary information which will

use for development of any project . For above example we gather information like

which types of characteristics client wants. It also defines system requirement

specification. This phase defines what to do.

2) Design: In design phase we then construct design to how to implement that

requirements gathered into phase 1 .This phase define how to do .For this phase

we then write algorithms

3) Coding: Now base on design phase we then write actual code to implement

algorithms. This code should be efficient.

4) Testing : This phase use to test our coding part it checks all the validation...like

our code should work for each and every possibilities of input if any bug occur

then we have to report that bug to design phase or development phase.

5) Maintenance: In this phase we need keep updating information.

1. The implementation process contains software preparation and transition

activities, such as the conception and creation of the maintenance plan; the

preparation for handling problems identified during development; and the follow

up on product configuration management.

Linear / Waterfall Model

2. The problem and modification analysis process, which is executed once the

application has become the responsibility of the maintenance group. The

maintenance programmer must analyze each request, confirm it (by reproducing

the situation) and check its validity, investigate it and propose a solution,

document the request and the solution proposal,

and, finally, obtain all the required authorizations to apply the modifications.

3. The process considering the implementation of the modification itself.

4. The process acceptance of the modification, by confirming the modified work

with the individual who submitted the request in order to make sure the

modification provided a solution.

5. The migration process is exceptional, and is not part of daily maintenance tasks.

If the software must be ported to another platform without any change in

functionality, this process will be used and a maintenance project team is likely to

be assigned to this task.

6. Finally, the last maintenance process, also an event which does not occur on a

daily basis, is the retirement of a piece

Strength and Weakness

Model/feature Strengths Weaknesses When to Use

Waterfall • Easy to understand and implement. • All requirements must be known upfront • When quality is more

• Widely used and known. • Inflexible. important than cost or

• Define before design, and design before • Backing up to solve mistakes is difficult, schedule.

coding. once an application is in • When requirements

• Being a linear model, it is very simple to the testing stage, it is very difficult to go are very well known,

implement. back and change something that was not clear, and fixed.

• Works well on mature products and provides well-thought out in the concept stage. • New version of existing

structure to inexperienced teams. • A non-documentation deliverable only product is needed.

• Minimizes planning overhead. produced at the final phase. • Porting an existing

• Phases are processed and completed one at a • Client may not be clear about what they product to a new

time. want and what is needed. platform

• Customers may have little opportunity to

preview the system until it may be too

late.

• It is not a preferred model for complex

and object-oriented projects.

• High amounts of risk and uncertainty,

thus, small changes or errors that arise in

the completed software may cause a lot

The Rapid prototyping model is intended to provide a rapid

implementation of high level portions of both the software

and the hardware . The approach allows developers

to construct working portion of hardware and software in

incremental stages.Each stage through the cycle,one

incorporates a little more of the intended functionality.The

prototype is useful for both the designer and the customer.

The prototype can be either evolutionary or throughway. It

has the advantage of having a working system early in

development process

Spiral Model

The steps in spiral model life cycle are

Determine objective,alternatives,and

constraints.

Identify and resolve risks.

Evaluate alternatives.

Develop deliverables-verify that they are

correct.

Plan the next iteration.

Commit to an approach for the next iteration.

Spiral Model

Comparison
Properties of Model Water-Fall Model Incremental Model Spiral Model Rapid Model

Planning in early stage Yes Yes Yes No

Returning to an earlier

phase

No Yes Yes Yes

Handle Large-Project Not Appropriate Not Appropriate Appropriate Not Appropriate

Detailed Documentation Necessary Yes but not much Yes Limited

Cost Low Low Expensive Low

Requirement

Specifications

Beginning Beginning Beginning Time boxed release

Flexibility to change Difficult Easy Easy Easy

User Involvement Only at beginning Intermediate High Only at the beginning

Maintenance Least Promotes Maintainability Typical Easily Maintained

Duration Long Very long Long Short

Risk Involvement High Low Medium to high risk Low

Framework Type Linear Linear + Iterative Linear + Iterative Linear

Properties of Model Water-Fall Model Incremental Model Spiral Model Rapid Model

Testing After completion of

coding phase

After every iteration At the end of the

engineering phase

After completion of

coding

Overlapping Phases No Yes (As parallel

development is there)

No Yes

Maintenance Least Maintainable Maintainable Yes Easily Maintainable

Re-usability Least possible To some extent To some extent Yes

Time-Frame Very Long Long Long Short

Working software

availability

At the end of the life-

cycle

At the end of every

iteration

At the end of every

iteration

At the end of the life

cycle

Objective High Assurance Rapid Development High Assurance Rapid development

Team size Large Team Not Large Team Large Team Small Team

Customer control over

administrator

Very Low Yes Yes Yes

Context Switching in OS

What is the context switching in the operating
system?

• The Context switching is a technique or method used by the
operating system to switch a process from one state to another to
execute its function using CPUs in the system.

• When switching perform in the system, it stores the old running
process's status in the form of registers and assigns the CPU to a new
process to execute its tasks. While a new process is running in the
system, the previous process must wait in a ready queue. The
execution of the old process starts at that point where another
process stopped it.

• It defines the characteristics of a multitasking operating system in
which multiple processes shared the same CPU to perform multiple
tasks without the need for additional processors in the system.

https://www.javatpoint.com/cpu-full-form
https://www.javatpoint.com/central-processing-unit

When does context switching happen?

1. When a high-priority process comes to a ready state (i.e. with higher
priority than the running process)
2. An Interrupt occurs
3. User and kernel-mode switch (It is not necessary though)
4. Preemptive CPU scheduling used.

The need for Context switching
• A context switching helps to share a single CPU across all processes to complete its execution and

store the system's tasks status. When the process reloads in the system, the execution of the
process starts at the same point where there is conflicting.

• Following are the reasons that describe the need for context switching in the Operating system.

• The switching of one process to another process is not directly in the system. A context switching
helps the operating system that switches between the multiple processes to use the CPU's
resource to accomplish its tasks and store its context. We can resume the service of the process
at the same point later. If we do not store the currently running process's data or context, the
stored data may be lost while switching between processes.

• If a high priority process falls into the ready queue, the currently running process will be shut
down or stopped by a high priority process to complete its tasks in the system.

• If any running process requires I/O resources in the system, the current process will be switched
by another process to use the CPUs. And when the I/O requirement is met, the old process goes
into a ready state to wait for its execution in the CPU. Context switching stores the state of the
process to resume its tasks in an operating system. Otherwise, the process needs to restart its
execution from the initials level.

• If any interrupts occur while running a process in the operating system, the process status is saved
as registers using context switching. After resolving the interrupts, the process switches from a
wait state to a ready state to resume its execution at the same point later, where the operating
system interrupted occurs.

• A context switching allows a single CPU to handle multiple process requests simultaneously
without the need for any additional processors.

Example of Context Switching
• Suppose that multiple processes are stored in a Process Control Block

(PCB). One process is running state to execute its task with the use of CPUs.
As the process is running, another process arrives in the ready queue,
which has a high priority of completing its task using CPU.

• Here we used context switching that switches the current process with the
new process requiring the CPU to finish its tasks. While switching the
process, a context switch saves the status of the old process in registers.

• When the process reloads into the CPU, it starts the execution of the
process when the new process stops the old process. If we do not save the
state of the process, we have to start its execution at the initial level.

• In this way, context switching helps the operating system to switch
between the processes, store or reload the process when it requires
executing its tasks.

Context switching triggers

• Following are the three types of context switching triggers as follows.
• Interrupts

• Multitasking

• Kernel/User switch

• Interrupts: A CPU requests for the data to read from a disk, and if there are
any interrupts, the context switching automatic switches a part of the
hardware that requires less time to handle the interrupts.

• Multitasking: A context switching is the characteristic of multitasking that
allows the process to be switched from the CPU so that another process
can be run. When switching the process, the old state is saved to resume
the process's execution at the same point in the system.

• Kernel/User Switch: It is used in the operating systems when switching
between the user mode, and the kernel/user mode is performed.

What is the PCB?

• A PCB (Process Control Block) is a data structure used in the operating
system to store all data related information to the process. For
example, when a process is created in the operating system, updated
information of the process, switching information of the process,
terminated process in the PCB.

Steps for Context Switching
• There are several steps involves in context switching of the processes. The

following diagram represents the context switching of two processes, P1 to P2,
when an interrupt, I/O needs, or priority-based process occurs in the ready queue
of PCB. ➢ As we can see in the diagram, initially,

the P1 process is running on the CPU to

execute its task, and at the same time,

another process, P2, is in the ready

state.

➢ If an error or interruption has occurred

or the process requires input/output,

the P1 process switches its state from

running to the waiting state. Before

changing the state of the process P1,

context switching saves the context of

the process P1 in the form of registers

and the program counter to the PCB1.

➢ After that, it loads the state of the P2

process from the ready state of

the PCB2 to the running state.

Context Switching
• The following steps are taken when switching Process P1 to Process 2:

• First, thes context switching needs to save the state of process P1 in the form of
the program counter and the registers to the PCB (Program Counter Block), which
is in the running state.

• Now update PCB1 to process P1 and moves the process to the appropriate
queue, such as the ready queue, I/O queue and waiting queue.

• After that, another process gets into the running state, or we can select a new
process from the ready state, which is to be executed, or the process has a high
priority to execute its task.

• Now, we have to update the PCB (Process Control Block) for the selected process
P2. It includes switching the process state from ready to running state or from
another state like blocked, exit, or suspend.

• If the CPU already executes process P2, we need to get the status of process P2 to
resume its execution at the same time point where the system interrupt occurs.

• Similarly, process P2 is switched off from the CPU so that the process P1 can
resume execution. P1 process is reloaded from PCB1 to the running state to
resume its task at the same point. Otherwise, the information is lost, and when
the process is executed again, it starts execution at the initial level.

Context Switching Cost

• Context Switching leads to an overhead cost because of TLB flushes,
sharing the cache between multiple tasks, running the task scheduler
etc. Context switching between two threads of the same process is
faster than between two different processes as threads have the
same virtual memory maps. Because of this TLB flushing is not
required.

Advantage of Context Switching

• Context switching is used to achieve multitasking i.e.
multiprogramming with time-sharing.

• Multitasking gives an illusion to the users that more than one process
are being executed at the same time. But in reality, only one task is
being executed at a particular instant of time by a processor. Here,
the context switching is so fast that the user feels that the CPU is
executing more than one task at the same time.

The disadvantage of Context Switching

• The disadvantage of context switching is that it requires some time
for context switching i.e. the context switching time. Time is required
to save the context of one process that is in the running state and
then getting the context of another process that is about to come in
the running state. During that time, there is no useful work done by
the CPU from the user perspective. So, context switching is pure
overhead in this condition.

• https://www.javatpoint.com/what-is-the-context-switching-in-the-
operating-system

• https://afteracademy.com/blog/what-is-context-switching-in-
operating-system

https://www.javatpoint.com/what-is-the-context-switching-in-the-operating-system
https://www.javatpoint.com/what-is-the-context-switching-in-the-operating-system

CSPC702 - EMBEDDED SYSTEMS
AND INTERNET OF THINGS(IOT)

UNIT II

Real Time Operating Systems

Syllabus
UNIT – II Real Time Operating Systems

• Prime Movers: Real time without RTOS, Task states, Task table and
data – Multitasking operating systems – Context switches – Kernels –
Task swapping methods – Scheduler algorithms – Inter process
communication mechanism-memory communication, Message
passing, Signals. Overview of ARM Architecture, Programmer’s model
and Development Tools.

Introduction to RTOS (Real Time Operating Systems)

• What is an Operating System (OS)?

• Generally, an operating system, or OS, is the life support system of a computer.

• This is a piece of software that ensures the operation of the hardware and is
responsible for the interaction between the hardware and the applications that
run on the computer.

• An operating system fulfills a number of significant functions including the
management of the CPU, memory, and peripheral devices of the computer. Also,
an OS mediates between the user and the machine providing a user interface and
services for all applications.

• An operating system is a computer program that supports a computer's basic
functions, and provides services to other programs (or applications) that run on
the computer. The applications provide the functionality that the user of the
computer wants or needs. The services provided by the operating system make
writing the applications faster, simpler, and more maintainable. If you are reading
this web page, then you are using a web browser (the application program that
provides the functionality you are interested in), which will itself be running in an
environment provided by an operating system.

What is a Real-Time Operating System (RTOS)?
• Real-time operating system (RTOS) is an

operating system intended to serve real time
application that process data as it comes in,
mostly without buffer delay. The full form of
RTOS is Real time operating system.

• In a RTOS, Processing time requirement are
calculated in tenths of seconds increments of
time. It is time-bound system that can be
defined as fixed time constraints. In this type
of system, processing must be done inside the
specified constraints. Otherwise, the system
will fail. The Figure Shows Real-time system
with RTOS

Fig. Realtime system with RTOS

OS or RTOS?

• The difference between an OS (Operating System) such as Windows
or Unix and an RTOS (Real Time Operating System) found in
embedded systems, is the response time to external events. OS’s
typically provide a non-deterministic, soft real time response, where
there are no guarantees as to when each task will complete, but they
will try to stay responsive to the user.

• An RTOS differs in that it typically provides a hard real time response,
providing a fast, highly deterministic reaction to external events. The
difference between the two can be highlighted through examples –
compare, for example, the editing of a document on a PC to the
operation of a precision motor control.

Why use an RTOS?
Here are important reasons for using RTOS:

• It offers priority-based scheduling, which allows you to separate analytical
processing from non-critical processing.

• The Real time OS provides API functions that allow cleaner and smaller
application code.

• Abstracting timing dependencies and the task-based design results in fewer
interdependencies between modules.

• RTOS offers modular task-based development, which allows modular task-
based testing.

• The task-based API encourages modular development as a task, will
typically have a clearly defined role. It allows designers/teams to work
independently on their parts of the project.

• An RTOS is event-driven with no time wastage on processing time for the
event which is not occur

Why use an RTOS?
• There are well-established techniques for writing good embedded software without the use of an RTOS. In

some cases, these techniques may provide the most appropriate solution; however as the solution becomes
more complex, the benefits of an RTOS become more apparent. These include:

• Priority Based Scheduling: The ability to separate critical processing from non-critical is a powerful tool.

• Abstracting Timing Information: The RTOS is responsible for timing and provides API functions. This allows
for cleaner (and smaller) application code.

• Maintainability/Extensibility: Abstracting timing dependencies and task based design results in fewer
interdependencies between modules. This makes for easier maintenance.

• Modularity: The task based API naturally encourages modular development as a task will typically have a
clearly defined role.

• Promotes Team Development: The task-based system allows separate designers/teams to work
independently on their parts of the project.

• Easier Testing: Modular task based development allows for modular task based testing.

• Code Reuse: Another benefit of modularity is that similar applications on similar platforms will inevitably
lead to the development of a library of standard tasks.

• Improved Efficiency: An RTOS can be entirely event driven; no processing time is wasted polling for events
that have not occurred.

• Idle Processing: Background or idle processing is performed in the idle task. This ensures that things such as
CPU load measurement, background CRC checking etc will not affect the main processing.

Components of RTOS
Here, are important Component of RTOS

The Scheduler: This component of RTOS tells that in which order, the

tasks can be executed which is generally based on the priority.

Symmetric Multiprocessing (SMP): It is a number of multiple

different tasks that can be handled by the RTOS so that parallel

processing can be done.

Function Library: It is an important element of RTOS that acts as an

interface that helps you to connect kernel and application code. This

application allows you to send the requests to the Kernel using a

function library so that the application can give the desired results.

Memory Management: this element is needed in the system to

allocate memory to every program, which is the most important

element of the RTOS.

Fast dispatch latency: It is an interval between the termination of

the task that can be identified by the OS and the actual time taken by

the thread, which is in the ready queue, that has started processing.

User-defined data objects and classes: RTOS system makes use of

programming languages like C or C++, which should be organized

according to their operation.

Types of RTOS
Three types of RTOS systems are:

• Soft Real Time:

➢Soft Real time RTOS, accepts some delays by the Operating system. In this type of RTOS, there is
a deadline assigned for a specific job, but a delay for a small amount of time is acceptable. So,
deadlines are handled softly by this type of RTOS.

➢Example: Online Transaction system and Livestock price quotation System.

• Hard Real Time :

➢ In Hard RTOS, the deadline is handled very strictly which means that given task must start
executing on specified scheduled time, and must be completed within the assigned time
duration.

➢Example: Medical critical care system, Aircraft systems, etc.

• Firm Real time:

➢These type of RTOS also need to follow the deadlines. However, missing a deadline may not have
big impact but could cause undesired affects, like a huge reduction in quality of a product.

➢Example: Various types of Multimedia applications.

Types of RTOS

Fig. Time Efficiency Curves of different RTOS

Terms used in RTOS
Here, are essential terms used in RTOS:

• Task – A set of related tasks that are jointly able to provide some system
functionality.

• Job – A job is a small piece of work that can be assigned to a processor, and that
may or may not require resources.

• Release time of a job – It's a time of a job at which job becomes ready for
execution.

• Execution time of a job: It is time taken by job to finish its execution.

• Deadline of a job: It's time by which a job should finish its execution.

• Processors: They are also known as active resources. They are important for the
execution of a job.

• Maximum It is the allowable response time of a job is called its relative deadline.

• Response time of a job: It is a length of time from the release time of a job when
the instant finishes.

• Absolute deadline: This is the relative deadline, which also includes its release
time.

Goals of the RTOS

• Small latency: It is real-time after all!

• Determinism: Again, it is real-time. You need to know how long things take
to process to make sure deadlines are met.

• Structured Software: With an RTOS, you are able to divide and conquer in
a structured manner. It's straight-forward to add additional components
into the application.

• Scalability: An RTOS must be able to scale from a simple application to a
complex one with stacks, drivers, file systems, etc.

• Offload development: An RTOS manages many aspects of the system
which allows a developer to focus on their application. For example an
RTOS, along with scheduling, generally handles power management,
interrupt table management, memory management, exception handling,
etc.

Features of RTOS
Here are important features of RTOS:

• Occupy very less memory

• Consume fewer resources

• Response times are highly predictable

• Unpredictable environment

• The Kernel saves the state of the interrupted task ad then determines
which task it should run next.

• The Kernel restores the state of the task and passes control of the
CPU for that task.

What is RTOS in Embedded System | Parameters for Selection

• RTOS is used in Embedded Systems as it requires real-time data. For a
Real Time OS to be functional, following parameters are to be
considered:

• Performance

• Error-Free

• Maximum Utilization

• Task Shift

• Middleware Support

• Embedded system usage

• Unique features

• 24/7 performance

https://electricalfundablog.com/embedded-system-characteristics-types-advantages-disadvantages/

Factors for selecting an RTOS
Here, are essential factors that you need to consider for selecting RTOS:

• Performance: Performance is the most important factor required to be
considered while selecting for a RTOS.

• Middleware: if there is no middleware support in Real time operating system,
then the issue of time-taken integration of processes occurs.

• Error-free: RTOS systems are error-free. Therefore, there is no chance of getting
an error while performing the task.

• Embedded system usage: Programs of RTOS are of small size. So we widely use
RTOS for embedded systems.

• Maximum Consumption: we can achieve maximum Consumption with the help
of RTOS.

• Task shifting: Shifting time of the tasks is very less.

• Unique features: A good RTS should be capable, and it has some extra features
like how it operates to execute a command, efficient protection of the memory of
the system, etc.

• 24/7 performance: RTOS is ideal for those applications which require to run 24/7.

What should be considered when choosing an RTOS?
• Responsiveness: The RTOS scheduling algorithm, interrupt latency and context

switch times will significantly define the responsiveness and determinism of the
system. The most important consideration is what type of response is desired – Is
a hard real time response required? This means that there are precisely defined
deadlines that, if not met, will cause the system to fail. Alternatively, would a
non-deterministic, soft real time response be appropriate? In which case there
are no guarantees as to when each task will complete.

• Available system resources: Micro kernels use minimum system resources and
provide limited but essential task scheduling functionality. Micro kernels
generally deliver a hard real time response, and are used extensively with
embedded microprocessors with limited RAM/ROM capacity, but can also be
appropriate for larger embedded processor systems.

• Alternatively, a full featured OS like Linux or WinCE could be used. These provide
a feature rich operating system environment, normally supplied with drivers,
GUI’s and middleware components. Full featured OS’s are generally less
responsive, require more memory and more processing power than micro
kernels, and are mainly used on powerful embedded processors where system
resources are plentiful.

What should be considered when choosing an RTOS?
• Open source or professionally licensed: There are widely used, free open source RTOS’s available,

distributed under GPL or modified GPL licenses. However, these licenses may contain copy left
restrictions and offer little protection. Professionally licensed RTOS products remove the copy left
restrictions, offer full IP infringement indemnification and warranties. In addition, you have a
single company providing support and taking responsibility for the quality of your product.

• Quality: What emphasis does the RTOS supplier place on quality within their organisation?
Quality is more than just a coding standard. Are the correct procedures in place to guarantee the
quality of future products and support? Well-managed companies that take quality seriously tend
to be ISO 9001 certified.

• Safety Certification: Pre-certified and certifiable RTOS’s are available for applications that require
certification to international design standards such as DO-178C and IEC 61508. These RTOS’s
provide key safety features, and the design evidence required by certification bodies to confirm
that the process used to develop the RTOS meets the relevant design standard.

• Licensing: It’s not only the RTOS functionality and features that you’ll need to consider, but the
licensing model that will work best for your project budget and the company’s “return on
investment”.

• RTOS Vendor: The company behind the RTOS is just as important as selecting the correct RTOS
itself. Ideally you want to build a relationship with a supplier that can support not only your
current product, but also your products of the future. To do this you need to select a proactive
supplier with a good reputation, working with leading silicon manufacturers to ensure they can
support the newest processors and tools.

• Trust, quality of product, and quality of support is everything.

The use of RTOS in embedded designs
• Many embedded programmers shy away from using an RTOS because

they suspect that it adds too much complexity to their application, or
it is simply unknown territory. An RTOS typically requires anything up
to 5% of the CPU’s resources to perform its duties. While there will
always be some resource penalties, an RTOS can make up for it in
areas such as simplified determinism, ease of use though HW
abstraction, reduced development time and easier debugging.

• Using an RTOS means you can run multiple tasks concurrently,
bringing in the basic connectivity, privacy, security, and so on as and
when you need them. An RTOS allows you to create an optimized
solution for the specific requirements of your project.

How does RTOS (Real Time Operating System) Work?

• Real Time Application requests are serviced by Real Time Operating
System. The RTOS allows multiple tasks or programs to execute
simultaneously based on its priority. Task scheduling Unit decides
which thread is to be executed. The processor suspends the running
task (if any) and executes the high priority task it receives.

Schematic Representation of Working of RTOS

How does RTOS (Real Time Operating System) Work?

• Let us say, a user is browsing on the net and after few seconds
switches on YouTube Video and in no time, the user starts listening to
a Podcast. Browsing on the net is considered as ‘Task 1’, Video on
YouTube is Task 2 and listening to Podcast is assumed to be Task 3.
Switching between these tasks is called as Multi-Tasking and RTOS
provides efficient multitasking services.

• When the User shifts to Task 2, then Task 1 is terminated and
executes Task 2 as its priority is High. Similarly, when the User shifts
to Task 3, then Task 2 gets terminated and task 3 is executed. Task
Scheduling Unit takes care of these functions. Inter
task communication, Synchronization, Time management is taken
care of by RTOS Kernel. Schematic representation of the same is
shown in the above fig(Schematic Representation of Working of RTOS).

https://electricalfundablog.com/communication-protocols-embedded-systems/

Difference between in GPOS and RTOS

General-Purpose Operating System (GPOS) Real-Time Operating System (RTOS)

It used for desktop PC and laptop. It is only applied to the embedded application.

Process-based Scheduling. Time-based scheduling used like round-robin

scheduling.

Interrupt latency is not considered as

important as in RTOS.

Interrupt lag is minimal, which is measured in

a few microseconds.

No priority inversion mechanism is present in

the system.

The priority inversion mechanism is current. So

it can not modify by the system.

Kernel's operation may or may not be

preempted.

Kernel's operation can be preempted.

Priority inversion remain unnoticed No predictability guarantees

Comparison between GPOS and RTOS

Applications of Real Time Operating System
Where are RTOS (Real Time Operating System) Used?

RTOS finds its application in embedded systems because of its accurate real-time data. Some of the
major applications are listed below:

➢Airlines reservation system.

➢Air traffic control system.

➢ Systems that provide immediate

updating.

➢Used in any system that provides

up to date and minute

information on stock prices.

➢Defense application systems like

RADAR.

➢Command Control Systems

➢ Internet Telephony

➢Heart Pacemaker

➢Mobile applications.

➢Online transaction system.

➢Medical Critical Care systems.

➢Price quotation systems.

➢Network and multimedia

systems.

➢Anti-Lock brake systems.

➢Online calling.

➢Ticket reservation systems.

➢Command control systems.

https://electricalfundablog.com/embedded-system-characteristics-types-advantages-disadvantages/

Advantages of RTOS (Real Time Operating System)

• The advantages of Real-Time Operating System include:

• RTOS is event-driven with no processing time delay.

• Real Time OS offers task-based API development. This helps designers
or testers to work independently on their parts of the project.

• It reduces the interdependencies between the modules by
abstracting timing dependencies and task-based design.

• It offers cleaners and smaller application courses.

• Priority-based scheduling allows the user to separate analytical
processing time and Critical processing time.

Disadvantages of RTOS

Here, are drawbacks/cons of using RTOS system:

• RTOS system can run minimal tasks together, and it concentrates only on
those applications which contain an error so that it can avoid them.

• RTOS is the system that concentrates on a few tasks. Therefore, it is really
hard for these systems to do multi-tasking.

• Specific drivers are required for the RTOS so that it can offer fast response
time to interrupt signals, which helps to maintain its speed.

• Plenty of resources are used by RTOS, which makes this system expensive.

• The tasks which have a low priority need to wait for a long time as the
RTOS maintains the accuracy of the program, which are under execution.

• Minimum switching of tasks is done in Real time operating systems.

• It uses complex algorithms which is difficult to understand.

• RTOS uses lot of resources, which sometimes not suitable for the system.

Prime Movers
• The prime mover behind a plan, idea, or situation is someone who has an important

influence in starting it. (Or)

• It is a person who is chiefly responsible for the creation or execution of a plan.

(Or)

• an initial source of motive power.

• What is an example of a prime mover?

Windmills, waterwheels, turbines, steam engines, and internal-combustion engines
are prime movers. In these machines the inputs vary; the outputs are usually rotating
shafts capable of being used as inputs to other machines, such as electric generators,
hydraulic pumps, or air compressors.

• What are prime movers and its types?

These technologies include different prime mover types such as steam turbines, gas
turbines, reciprocating internal combustion engines, micro-gas turbines, micro-steam
turbines, Stirling engines, fuel cells, and thermal photovoltaic systems.

• What is prime mover concept?

'that which moves without being moved') or prime mover (Latin: primum movens) is
a concept advanced by Aristotle as a primary cause (or first uncaused cause) or "mover" of
all the motion in the universe. As is implicit in the name, the unmoved mover moves other
things, but is not itself moved by any prior action.

Real time without RTOS

Task states, Task table and data
Task Management In RTOS

• The application is decomposed into small, schedulable, and
sequential program units known as “Task”, a basic unit of execution
and is governed by three time critical properties; release time,
deadline and execution time. Release time refers to the point in time
from which the task can be executed. Deadline is the point in time by
which the task must complete. Execution time denotes the time the
task takes to execute.

• Fig: Use of RTOS for Time Management Application

Task states, Task table and data

• Dormant : Task doesn’t require
computer time

• Ready: Task is ready to go active
state, waiting processor time

• Active: Task is running

• Suspended: Task put on hold
temporarily

• Pending: Task waiting for resource.

Task states, Task table and data

• During the execution of an application program, individual tasks are
continuously changing from one state to another. However, only one
task is in the running mode (i.e. given CPU control) at any point of the
execution.

• In the process where CPU control is change from one task to another,
context of the to-be-suspended task will be saved while context of
the to-be-executed task will be retrieved, the process referred to as
context switching.

Task states, Task table and data

A task object is defined by the following set of components:

• Task Control block: Task uses TCBs to remember its context. TCBs are
data structures residing in RAM, accessible only by RTOS

• Task Stack: These reside in RAM, accessible by stack pointer.

• Task Routine: Program code residing in ROM

• Scheduler: The scheduler keeps record of the state of each task and
selects from among them that are ready to execute and allocates the
CPU to one of them. Various scheduling algorithms are used in RTOS.

• Polled Loop: Sequentially determines if specific task requires time.

Multitasking operating systems
• Definition – Multitasking operating system provides the interface for executing the multiple program tasks

by single user at a same time on the one computer system.

• For example, any editing task can be performed while other programs are executing concurrently. Other
example, user can open Gmail and Power Point same time.

• For example, when you see someone in the car next to you eating a burrito, taking on his cell phone, and
trying to drive at the same, that person is multitasking.

• (or) Multitasking Multitasking refers to term where multiple jobs are executed by the CPU simultaneously by
switching between them. Switches occur so frequently that the users may interact with each program while
it is running. Operating system does the following activities related to multitasking.

• The user gives instructions to the operating system or to a program directly, and receives an immediate
response.

• Operating System handles multitasking in the way that it can handle multiple operations / executes multiple
programs at a time.

• Multitasking Operating Systems are also known as Time-sharing systems.

• These Operating Systems were developed to provide interactive use of a computer system at a reasonable
cost.

• A time-shared operating system uses concept of CPU scheduling and multiprogramming to provide each user
with a small portion of a time-shared CPU.

• Each user has at least one separate program in memory.

• A program that is loaded into memory and is executing is commonly referred to as a process.

Multitasking operating systems

TERMS used in Multitasking operating systems
• context switch: a multitasking operating system shifting from one task to

another; for example, after formatting a print job for one user, the computer
might switch to resizing a graphic for another user.

• cooperative multitasking: an implementation of multitasking in which the
operating system will not initiate a context switch while a process is running in
order to allow the process to complete.

• hardware interruption: a device attached to a computer sending a message to
the operating system to inform it that the device needs attention, thereby
“interrupting” the other tasks that the operating system was performing.

• multiprocessing: the use of more than one central processing unit to handle
system tasks; this requires an operating system capable of dividing tasks between
multiple processors.

• preemptive multitasking: an implementation of multitasking in which the
operating system will initiate a context switch while a process is running, usually
on a schedule so that switches between tasks occur at precise time intervals.

• time-sharing: the use of a single computing resource by multiple users at the
same time, made possible by the computer's ability to switch rapidly between
users and their needs.

Multi tasking system’s working

• In a time sharing system, each process is
assigned some specific quantum of time
for which a process is meant to execute.
Say there are 4 processes P1, P2, P3, P4
ready to execute. So each of them are
assigned some time quantum for which
they will execute e.g time quantum of 5
nanoseconds (5 ns). As one process
begins execution (say P2), it executes for
that quantum of time (5 ns). After 5 ns
the CPU starts the execution of the
other process (say P3) for the specified
quantum of time.

Multi tasking system’s working
• Thus the CPU makes the processes to share time slices between them and execute

accordingly. As soon as time quantum of one process expires, another process begins its
execution.

• Here also basically a context switch is occurring but it is occurring so fast that the user is
able to interact with each program separately while it is running. This way, the user is
given the illusion that multiple processes/ tasks are executing simultaneously. But
actually only one process/ task is executing at a particular instant of time. In
multitasking, time sharing is best manifested because each running process takes only a
fair quantum of the CPU time.

• In a more general sense, multitasking refers to having multiple programs, processes,
tasks, threads running at the same time. This term is used in modern operating systems
when multiple tasks share a common processing resource (e.g., CPU and Memory).

• As depicted in the above image, At any time the CPU is executing only one task while
other tasks are waiting for their turn. The illusion of parallelism is achieved when the
CPU is reassigned to another task. i.e all the three tasks A, B and C are appearing to occur
simultaneously because of time sharing.

• So for multitasking to take place, firstly there should be multiprogramming i.e. presence
of multiple programs ready for execution. And secondly the concept of time sharing.

Types of Multitasking Operating System
• True Multitasking:

• True multitasking is the capable for executing and process multiple tasks
concurrently without taking delay instead of switching tasks from one
processor to other processor. It can perform couple of tasks in parallel with
underlying the H/W or S/W.

• Preemptive Multitasking

• Preemptive multitasking is special task that is assigned to computer
operating system, in which it takes decision that how much time spent by
one task before assigning other task for using the operating system.
Operating system has control for completing this entire process, so it is
known as “Preemptive”.
• Cooperative Multitasking

• Cooperative multitasking is known as “Non-Preemptive Multitasking”. Main
goal of Cooperative multitasking is to run currently task, and to release the
CPU to allow another task run. This task is performed by calling
taskYIELD().Context-switch is executed when this function is called.

https://digitalthinkerhelp.com/what-is-operating-system-and-its-types-uses/
https://digitalthinkerhelp.com/what-is-operating-system-and-its-types-uses/

Advantages of Multitasking Operating System
• Time Shareable

• In which, all tasks are allocated specific piece of time, so they do not need for
waiting time for CPU.

• Manage Several Users

• This operating system is more comfort for handling the multiple users
concurrently, and several programs can run smoothly without degradation of
system’s performance.

• Secured Memory

• Multitasking operating system has well defined memory management, because
this operating system does not provide any types of permissions of unwanted
programs to wasting the memory.

• Great Virtual Memory

• Multitasking operating system contains the best virtual memory system. Due to
virtual memory, any program do not need long waiting g time for completion
their tasks, if this problem is occurred then those programs are transferred to
virtual memory.

https://digitalthinkerhelp.com/what-is-operating-system-and-its-types-uses/

Advantages of Multitasking Operating System

• Background Processing

• Multitasking operating system creates the better environment to execute the
background programs. These background programs are not transparent for
normal users, but these programs help to run other programs smoothly such as
firewall, antivirus software, and more.

• Good Reliability

• Multitasking operating system provides the several flexibilities for multiple users,
and they are more satisfied to them. On which, every users can operate single or
multiple programs with smoothly.

• Use Multiple Programs

• Users can operate multiple programs such as internet browser, PowerPoint, MS
Excel, games, and other utilities concurrently.

• Optimize Computer Resources

• Multitasking operating system is able to handle smoothly multiple computers’
resources such as RAM, input/output devices, CPU, hard disk, and more.

https://en.wikipedia.org/wiki/Transparency
https://digitalthinkerhelp.com/types-of-computer-hardware-components-devices-parts/
https://digitalthinkerhelp.com/types-of-computer-hardware-components-devices-parts/
https://digitalthinkerhelp.com/types-of-computer-hardware-components-devices-parts/

Disadvantages of Multitasking Operating System
• Memory Boundation

• Computer can get slow performance, due to run multiple programs at a
same time because main memory gets more load while loading multiple
programs. CPU is not able to provide separate time for every program, and
its response time gets increase. Main reason of occurring this problem is
that it uses to less capacity RAM. So, for getting solution can be increased
the RAM capacity.

• Processor Boundation

• Computer can run programs slowly due to slow speed of their processors,
and its response time can increase while handling multiple programs. Need
better processing power, to overcome this problem.

• CPU Heat up

• Multiple processors become busier at a time for executing any task in
multitasking nature, So CPU produces more heat.

https://digitalthinkerhelp.com/computer-memory-primary-secondary-storage-devices/

Examples of Multitasking Operating System

• There are some examples of multi tasking OS like as –
• Windows XP

• Windows Vista

• Windows 7

• Windows 8

• Windows 10

• Windows 2000

• IBM’s OS/390
• Linux

• UNIX

Context switches

• Context switching is the mechanism that is changing the state of the
processes.

• In computing, a context switch is the process of storing the state of
a process or thread, so that it can be restored and resume execution at a
later point. This allows multiple processes to share a single CPU, and is an
essential feature of a multitasking operating system.

• The precise meaning of the phrase “context switch” varies. In a
multitasking context, it refers to the process of storing the system state for
one task, so that task can be paused and another task resumed. A context
switch can also occur as the result of an interrupt, such as when a task
needs to access disk storage, freeing up CPU time for other tasks. Some
operating systems also require a context switch to move between user
mode and kernel mode tasks. The process of context switching can have a
negative impact on system performance.

http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Thread_(computing)
http://en.wikipedia.org/wiki/Execution_(computing)
http://en.wikipedia.org/wiki/CPU
http://en.wikipedia.org/wiki/Multitasking_operating_system
http://en.wikipedia.org/wiki/Interrupt
http://en.wikipedia.org/wiki/Disk_storage
http://en.wikipedia.org/wiki/User_space
http://en.wikipedia.org/wiki/User_space

RTOS Context Switching
• An RTOS at its cores offers several basic primitives:

• A scheduler capable of context switching between different tasks. Tasks can usually be prioritized
and at a bare minimum a scheduler is usually capable of alternating between tasks when new
events arrive (i.e a new accelerometer sample is available) or when the task yields its slot.

• Very basic Operating System primitives (such as mutexes/semaphores and a way to pass
messages between tasks)

• Configuration operations for sandboxing different code from one another by leveraging the
privilege and access control features the hardware offers.

• Schedulers usually come in two main varieties:

• Preemptive - A context switch while a task is “running” if something more important comes up.

• Cooperative - A context switch will never occur while another task is “running”. A task must
explicitly yield for another task to run. Tasks must “co-operate” for everyone to get a chance to
run.

• When an RTOS scheduler decides a different task should be run than what is currently running, it
will trigger a context switch. When switching from one task to another, the “state” of the current
task needs to be preserved in some way. This includes information such as the execution state of
the task (i.e blocked on a mutex, sleeping, etc) and the values of the active hardware registers.

RTOS Task Context Switching
• The scheduling algorithms of real-time operating systems (RTOS), stated

that they can run tasks in such a way that leaves the impression of a
multitasking behavior. This is achieved by giving the RTOS the capability to
interrupt a currently executing task and to start executing another one. At
some point in time, the interrupted task should resume its operation.
When that occurs the microprocessor must be put in the same state as it
was the last time the interrupted task was being executed. This is done
using a mechanism called context switching.

• Each task uses a specific set of resources when it is executing. These
include CPU registers, system status flags, access to memory (heap, stack),
etc.. All these resources are what we call a task state (aka task execution
context). Context switching is a process of saving the task state (with the
intention for it to be restored at a later point in time) and switching it with
another already saved task state.

• Task context switching guarantees that each task sees the CPU as its own.
This mimics the behavior of real multitasking, where each task should have
its own dedicated CPU.

https://open4tech.com/rtos-scheduling-algorithms/

Context Switching Basics

• Context switching is not a mechanism used only in real-time
operating systems. Every microprocessor uses some form of context
switching when an exception occurs and a service routine has to be
executed. In most modern CPU architectures the exception context
switching is usually handled partly by the hardware (some registers
are automatically saved) and partly by the compiler-generated code.

• Task context switching in real-time operating systems is implemented
as part of their source code. Although it is handled using software,
context switching is hardware dependent, as the resources needed
may differ from one microprocessor to another. This means that the
code for task context switching must be ported for each CPU
architecture.

https://open4tech.com/exception-types-microcontrollers/

Implementation Details
• Now analyze how task context switching can be implemented. As a start,

we should make sure that each task, has its own private stack.

• In addition to using it as a regular application stack, this private stack will
also be used to store the task state (CPU registers, return address, stack
pointer value, etc.). In the basic “bare-bone” applications we usually have
only one stack for the whole program.

• The obvious question is how can we implement individual stacks for each
task? This is accomplished by modifying the value of the stack pointer
register.

• The stack is just a section from the volatile memory (RAM) that we
“reserve” for stack operation. The location of this section is pointed by the
stack pointer.

• The basic principle is that each task will have a specific area of the memory
for its stack. The start address of this stack will be stored in a variable, so it
can be loaded when the task is being activated.

https://open4tech.com/the-concept-of-stack-and-its-usage-in-microprocessors/

Memory Allocation

• RTOS kernel objects such as tasks, semaphores, etc. can be allocated
dynamically or statically (during compilation). For task dynamic
allocation, the RTOS usually provides different schemes. For example:

• allocating the space for the task once, and never freeing it

• once a task has completed its operation the space allocated for it on
the heap is freed

• The most suitable dynamic allocation scheme depends on the
application complexity and the resource constraints of the embedded
system.

Memory Allocation
• Fig. Shows the RTOS task memory structure and

placement in heap memory

• Now let’s see how much memory an RTOS task
requires. We are not focusing on a specific RTOS
distribution and we will try to cover the things that
are common across all of them.

• Each created task should have a task control
information memory area and a stack memory
area. This is shown on the left side of Fig. 1. Task
control information area has a fixed size and it
may include:

• task’s name (a pointer to the C function
implementing the task)

• debug information

• the size of the task’s stack

• top of the stack pointer (address)

• task priority

• All tasks are placed in the heap memory.

https://open4tech.com/concept-heap-usage-embedded-systems/

Context Switching Flow

• As a final step let’s analyze a context switching flow using an example
involving two tasks – Task 1 and Task 2. Task 1 is currently running,
while Task 2 which has a higher priority has just become ready to run.
This situation will require a context switch, and the steps involved are
the following: (from step 1 to step 9)

Fig. 2 Stack content before and after saving of task state (context)

Context Switching Flow
1. Task 1 is executing

2. RTOS tick exception is generated

3. The hardware automatically saves some registers onto the current task’s stack. This depends on the CPU
architecture.
➢ ARM Cortex-M automatically saves R0-R3, R12, LR(R14), return address and xPSR.

4. 4. An RTOS handler function for the tick exception stores any additional registers that are part of the
current task state (see Fig. 2).
➢ For ARM Cortex-M this handler function should save registers R4-R11, R14.

5. The stack pointer value (address of the last register pushed into the stack) is saved in the task control
information area.

6. The handler checks if there is a higher priority task waiting to be run, in our case, this is Task 2. The CPU
stack pointer register is loaded with the stack pointer value stored in Task 2’s information control memory
area.

7. We are still in the RTOS handler function for the tick exception, but now the stack pointer is pointing to
the last entry in Task 2 stack area. The context that is saved by this handler upon entry (step 4) into the
stack is now being restored. Note that the context for Task 1 was saved upon exception entry, but now we
are restoring the context for Task 2.

8. When exiting the handler, the hardware automatically restores any data saved during step 3 of the flow.
Note again that the hardware is restoring the context for Task 2, as the stack pointer is loaded with Task
2’s stack address (step 6).

9. Now we are out of the exception handling routine. The program will continue regular execution but not
on the task that was interrupted (Task 1), instead Task 2 will be executed. The context switch is complete!

All the “magic” of performing a task context switch is directly related to the manipulation of the stack pointer
value for achieving an individual stack area for each task.

Kernels
• RTOS Architecture – Kernel

• Kernel

• RTOS kernel acts as an abstraction layer between the hardware and
the applications. There are three broad categories of kernels

• Monolithic kernel

• Monolithic kernels are part of Unix-like operating systems like Linux,
FreeBSD etc. A monolithic kernel is one single program that contains
all of the code necessary to perform every kernel related task. It runs
all basic system services (i.e. process and memory management,
interrupt handling and I/O communication, file system, etc) and
provides powerful abstractions of the underlying hardware. Amount
of context switches and messaging involved are greatly reduced
which makes it run faster than microkernel.

Kernels
• Microkernel

• It runs only basic process communication (messaging) and I/O
control. It normally provides only the minimal services such as
managing memory protection, Inter process communication and the
process management. The other functions such as running the
hardware processes are not handled directly by microkernels. Thus,
micro kernels provide a smaller set of simple hardware abstractions.
It is more stable than monolithic as the kernel is unaffected even if
the servers failed (i.e.File System). Microkernels are part of the
operating systems like AIX, BeOS, Mach, Mac OS X, MINIX, and QNX.
Etc .

Kernels

• Hybrid Kernel

• Hybrid kernels are extensions of microkernels with some properties of
monolithic kernels. Hybrid kernels are similar to microkernels, except
that they include additional code in kernel space so that such code
can run more swiftly than it would were it in user space. These are
part of the operating systems such as Microsoft Windows NT, 2000
and XP. DragonFly BSD, etc

• Exokernel

• Exokernels provides efficient control over hardware. It runs only
services protecting the resources (i.e. tracking the ownership,
guarding the usage, revoking access to resources, etc) by providing
low-level interface for library operating systems and leaving the
management to the application.

Relevance of Kernel in RTOS Architecture

Architecture of RTOS

Kernels
• Six types of common services are shown in the following figure below

and explained in subsequent sections

A Figure Showing Common Services Offered By a RTOS System

RTOS Kernel Service- Task Management
• Task Management

• Task Object

• In RTOS, The application is decomposed into small, schedulable, and
sequential program units known as “Task”, a basic unit of execution
and is governed by three time-critical properties; release time,
deadline and execution time. Release time refers to the point in time
from which the task can be executed. Deadline is the point in time by
which the task must complete. Execution time denotes the time the
task takes to execute.

A Diagram Illustrating Use of RTOS for Time Management Application

RTOS Kernel Service- Task Management
• Each task may exist in following

states

• Dormant : Task doesn’t require
computer time

• Ready: Task is ready to go active
state, waiting processor time

• Active: Task is running

• Suspended: Task put on hold
temporarily

• Pending: Task waiting for resource.

A Figure Representing Different Time
Management Tasks Done by an RTOS

RTOS Kernel Service- Task Management
• During the execution of an application program, individual tasks are continuously

changing from one state to another. However, only one task is in the running
mode (i.e. given CPU control) at any point of the execution. In the process where
CPU control is change from one task to another, context of the to-be-suspended
task will be saved while context of the to-be-executed task will be retrieved, the
process referred to as context switching.

• A task object is defined by the following set of components:

• Task Control block: Task uses TCBs to remember its context. TCBs are data
structures residing in RAM, accessible only by RTOS

• Task Stack: These reside in RAM, accessible by stack pointer.

• Task Routine: Program code residing in ROM

Task_ID

Task_State

Task_Priority

Task_Stack_Pointer

Task_Prog _Counter

RTOS Kernel Service- Synchronisation and communication

• Task Synchronisation & intertask communication serves to pass information amongst
tasks.

• Task Synchronisation

• Synchronization is essential for tasks to share mutually exclusive resources (devices,
buffers, etc) and/or allow multiple concurrent tasks to be executed (e.g. Task A needs a
result from task B, so task A can only run till task B produces it).

• Task synchronization is achieved using two types of mechanisms:

• Event Objects

• Event objects are used when task synchronization is required without resource sharing.
They allow one or more tasks to keep waiting for a specified event to occur. Event object
can exist either in triggered or non-triggered state. Triggered state indicates resumption
of the task.

• Semaphores.

• A semaphore has an associated resource count and a wait queue. The resource count
indicates availability of resource. The wait queue manages the tasks waiting for resources
from the semaphore. A semaphore functions like a key that define whether a task has
the access to the resource. A task gets an access to the resource when it acquires the
semaphore.

RTOS Kernel Service- Synchronisation and communication

• There are three types of semaphore:

• Binary Semaphores

• Counting Semaphores

• Mutually Exclusion(Mutex) Semaphores

• Semaphore functionality (Mutex) represented pictorially in the
following figure

A Diagram Showing Architecture of Semaphore Functionality

RTOS Kernel Service
• Memory Management

• Two types of memory managements are provided in RTOS – Stack and Heap.

• Stack management is used during context switching for TCBs. Memory other than
memory used for program code, program data and system stack is called heap memory
and it is used for dynamic allocation of data space for tasks. Management of this
memory is called heap management.

• Timer Management

• Tasks need to be performed after scheduled durations. To keep track of the delays,
timers- relative and absolute- are provided in RTOS.

• Interrupt and event handling

• RTOS provides various functions for interrupt and event handling, viz., Defining interrupt
handler, creation and deletion of ISR, referencing the state of an ISR, enabling and
disabling of an interrupt, etc. It also restricts interrupts from occurring when modifying a
data structure, minimise interrupt latencies due to disabling of interrupts when RTOS is
performing critical operations, minimises interrupt response times.

• Device I/O Management

• RTOS generally provides large number of APIs to support diverse hardware device
drivers.

Task swapping methods
• The choice of scheduler algorithms can play an important part in the

design of an embedded system and can dramatically affect the
underlying design of the software. There are many different types of
scheduler algorithm that can be used, each with either different
characteristics or different approaches to solving the same problem
of how to assign priorities to schedule tasks so that correct operation
is assured.

• Time Slice

• Pre-emption

• Co-operative multitasking

Task swapping methods –Time Slice

➢Time slicing has been previously mentioned in this chapter under the

topic of multitasking and can be used within an embed-ded system

where time critical operations are not essential. To be more accurate

about its definition, it describes the task switching mechanism and

not the algorithm behind it although its meaning has become

synonymous with both.

➢Time slicing works by making the task switching regular periodic

points in time. This means that any task that needs to run next will

have to wait until the current time slice is completed or until the

current task suspends its operation. This technique can also be used

as a scheduling method.

Task swapping methods –Time Slice

➢The choice of which task to run next is determined by the scheduling
algorithm and thus is nothing to do with the time slice mechanism itself. It
just happens that many time slice-based systems use a round-robin or other
fairness scheduler to distribute the time slices across all the tasks that need
to run.

➢ For real-time systems where speed is of the essence, the time slice period
plus the context switch time of the processor deter-mines the context switch
time of the system. With most time slice periods in the order of
milliseconds, it is the dominant factor in the system response. While the
time period can be reduced to improve the system context switch time, it
will increase the number of task switches that will occur and this will
reduce the efficiency of the system. The larger the number of switches, the
less time there is available for processing.

Task swapping methods –Pre-emption
• The alternative to time slicing is to use pre-emption where a currently

running task can be stopped and switched out — pre-empted — by a
higher priority active task. The active qualifier is important as the
example of pre-emption later in this section will show. The main
difference is that the task switch does not need to wait for the end of
a time slice and therefore the system context switch is now the same
as the processor context switch.

• As an example of how pre-emption works, consider a system with two
tasks A and B. A is a high priority task that acts as an ISR to service a
peripheral and is activated by a processor interrupt from the
peripheral. While it is not servicing the periph-eral, the task remains
dormant and stays in a suspended state. Task B is a low priority task
that performs system housekeeping.

Task swapping methods-Pre-emption

• When the interrupt is recognised by the processor, the operating
system will process it and activate task A. This task with its higher
priority compared to task B will cause task B to be pre-empted and
replaced by task A. Task A will continue processing until it has
completed and then suspend itself. At this point, task B will context
switch task A out because task A is no longer active.

• This can be done with a time slice mechanism provided the interrupt
rate is less than the time slice rate. If it is higher, this can also be fine
provided there is sufficient buffering available to store data without
losing it while waiting for the next time slice point. The problem
comes when the interrupt rate is higher or if there are multiple
interrupts and associated tasks.

Task swapping methods-Pre-emption

• In this case, multiple tasks may compete for the same time slice point and
the ability to run even though the total processing time needed to run all
of them may be considerably less than the time provided within a single
time slot. This can be solved by artificially creating more context switch
points by getting each task to suspend after completion.

• This may offer only a partial solution because a higher priority task may still
have to wait on a lower priority task to complete. With time slicing, the
lower priority task cannot be pre-empted and therefore the higher priority
task must wait for the end of the time slice or the lower priority task to
complete. This is a form of priority inversion which is explained in more
detail later.

• Most real-time operating systems support pre-emption in preference to
time slicing although some can support both methodologies

Task swapping methods -Co-operative multitasking

• This is the mechanism behind Windows 3.1 and while not applicable
to real-time operating systems for reasons which will become
apparent, it has been included for reference.

• The idea of co-operative multitasking is that the tasks themselves co-
operate between themselves to provide the illusion of multitasking.
This is done by periodically allowing other tasks or applications the
opportunity to execute.

• This requires programming within the application and the system can
be destroyed by a single rogue program that hogs all the processing
power. This method may be acceptable for a desktop personal
computer but it is not reliable enough for most real-time embedded
systems.

Scheduler algorithms

• Separate PPT

Inter process communication mechanism
• Intertask communication involves sharing of data among tasks

through sharing of memory space, transmission of data, etc. Intertask
communications is executed using following mechanisms

• Message queues – A message queue is an object used for intertask
communication through which task send or receive messages placed
in a shared memory. The queue may follow

• 1) First In First Out (FIFO),

• 2) Last in First Out(LIFO) or

• 3) Priority (PRI) sequence.

• Usually, a message queue comprises of an associated queue control
block (QCB), name, unique ID, memory buffers, queue length,
maximum message length and one or more task waiting lists. A
message queue with a length of 1 is commonly known as a mailbox.

Inter process communication mechanism

• Pipes – A pipe is an object that provide simple communication
channel used for unstructured data exchange among tasks. A pipe
does not store multiple messages but stream of bytes. Also, data flow
from a pipe cannot be prioritized.

• Remote procedure call (RPC) – It permits distributed computing
where task can invoke the execution of another task on a remote
computer.

A Diagram Showing Flow of a Message Queue in a Mailbox

What is Inter Process Communication?
• Inter process communication (IPC) is used for exchanging data

between multiple threads in one or more processes or programs. The
Processes may be running on single or multiple computers connected
by a network. The full form of IPC is Inter-process communication.

• It is a set of programming interface which allow a programmer to
coordinate activities among various program processes which can run
concurrently in an operating system. This allows a specific program to
handle many user requests at the same time.

• Since every single user request may result in multiple processes
running in the operating system, the process may require to
communicate with each other. Each IPC protocol approach has its
own advantage and limitation, so it is not unusual for a single
program to use all of the IPC methods.

Approaches for Inter-Process Communication

Here, are few important methods for interprocess communication:

Inter-Process Communication

• Pipes

• Pipe is widely used for communication between two related processes. This
is a half-duplex method, so the first process communicates with the second
process. However, in order to achieve a full-duplex, another pipe is needed.

• Message Passing:

• It is a mechanism for a process to communicate and synchronize. Using
message passing, the process communicates with each other without
resorting to shared variables.

• IPC mechanism provides two operations:

• Send (message)- message size fixed or variable

• Received (message)

Inter-Process Communication
• Message Queues:

• A message queue is a linked list of messages stored within the kernel.
It is identified by a message queue identifier. This method offers
communication between single or multiple processes with full-duplex
capacity.

• Direct Communication:

• In this type of inter-process communication process, should name
each other explicitly. In this method, a link is established between one
pair of communicating processes, and between each pair, only one
link exists.

Inter-Process Communication
• Indirect Communication:

• Indirect communication establishes like only when processes share a
common mailbox each pair of processes sharing several communication
links. A link can communicate with many processes. The link may be bi-
directional or unidirectional.

• Shared Memory:

• Shared memory is a memory shared between two or more processes that
are established using shared memory between all the processes. This type
of memory requires to protected from each other by synchronizing access
across all the processes.

• FIFO:

• Communication between two unrelated processes. It is a full-duplex
method, which means that the first process can communicate with the
second process, and the opposite can also happen.

Why IPC?
• Here, are the reasons for using the interprocess communication

protocol for information sharing:

• It helps to speedup modularity

• Computational

• Privilege separation

• Convenience

• Helps operating system to communicate with each other and
synchronize their actions.

Terms Used in IPC

• The following are a few important terms used in IPC:

• Semaphores: A semaphore is a signaling mechanism technique. This
OS method either allows or disallows access to the resource, which
depends on how it is set up.

• Signals: It is a method to communicate between multiple processes
by way of signaling. The source process will send a signal which is
recognized by number, and the destination process will handle it.

What is Like FIFOS and Unlike FIFOS

Like FIFOS Unlike FIFOS

It follows FIFO method Method to pull specific urgent messages

before they reach the front

FIFO exists independently of both

sending and receiving processes.

Always ready, so don't need to open or

close.

Allows data transfer among unrelated

processes.

Not have any synchronization problems

between open & close.

Summary: Inter Process Communication
• Definition: Inter-process communication is used for exchanging data between multiple

threads in one or more processes or programs.

• Pipe is widely used for communication between two related processes.

• Message passing is a mechanism for a process to communicate and synchronize.

• A message queue is a linked list of messages stored within the kernel

• Direct process is a type of inter-process communication process, should name each other
explicitly.

• Indirect communication establishes like only when processes share a common mailbox
each pair of processes sharing several communication links.

• Shared memory is a memory shared between two or more processes that are
established using shared memory between all the processes.

• Inter Process Communication method helps to speedup modularity.

• A semaphore is a signaling mechanism technique.

• Signaling is a method to communicate between multiple processes by way of signaling.

• Like FIFO follows FIFO method whereas Unlike FIFO use method to pull specific urgent
messages before they reach the front.

Memory communication

• The first thing that comes to mind as a mechanism for passing
information between different tasks is using a shared memory
location. It is important that the shared memory is protected either
by a mutex or semaphore (see RTOS Mutex and Semaphore Basics).

• A very basic example of using shared memory location is a global
variable. Although there is nothing stopping us from using such a
variable, it is not recommended as there are far more sophisticated
ways available as a means of communication between tasks.

Message passing

• We can generally define two types of message passing:

• Direct message passing – The sender and the receiver of the
messages are explicitly defined. As an example, the popular FreeRTOS
has Stream & Message Buffers as primitives for direct message
passing between a single writer task and a single reader task.

• Indirect message passing – The messages are placed in structures
such as message queues or mailboxes and multiple tasks have
read/write access.

https://www.freertos.org/RTOS-stream-message-buffers.html

Message Queues

• Message queues are data buffers with a finite amount of entries. Each
entry can contain data of a certain size (e.g 32bits). Message queues can be
used for passing data between tasks and between interrupt service
routines and tasks. They are implemented as thread-safe FIFO buffers.
Specific actions are defined in the RTOS in case a task tries to write to a full
message queue or tries to read an empty one.

• The most common operations that can be performed on message queues
are:

• Create/delete a message queue

• Get the number of messages currently stored in the queue

• Put a message into the queue

• Get a message from the queue

Message Queues

• Example: Using a message queue for buffering data

• Let’s have two tasks that are operating at different speeds. We can
use a message queue as a buffer if one of the tasks produces a burst
of data samples and the other task has to process each data sample
individually at a fixed rate.

Message Queues

• Mailboxes

• A mailbox can store a single data of specific size (e.g 32-bit variable)
and can be implemented as a single-entry queue. A single mailbox
can be accessed by many tasks. In some RTOS distributions, mailboxes
can have more than one entry, which makes them very similar to
what we described as a message queue in the previous chapter.

• Typical operation that can be performed on mailbox are:

• Create/delete a mailbox

• Write to a mailbox

• Read a mailbox

Signals

• Signaling mechanisms are a basic form of communication. They
indicate the occurrence of an event and can be used for
synchronization purposes.

• The two additional signaling mechanisms that have wide use in real-
time operating systems – event flags and task flags. As there are no
strict naming conventions, you may find these mechanisms under
slightly different names in different RTOS distributions, but the
function they serve is pretty much the same.

Signals
Event Flags

• Event flags are bits used to encode specific information. They are used for
synchronizing tasks and communication. The grouping of individual event
flags is called an event group or a signal.

• Events flags can be used by tasks and by interrupt service routines (ISR). A
single event flag (or a group) can be accessed by many different tasks. The
most common operations that can be performed on event flags are:

• Create/delete event flags

• Set/clear event flags

• Read a flag’s value

• Wait on a flag to take a specific value

• An example API for using event flags can be found in the CMSIS standard.

https://www.keil.com/pack/doc/cmsis/RTOS2/html/group__CMSIS__RTOS__EventFlags.html

Signals
Event Flags

Signals
Task Flags

• Task flags are a special form of event flags. While event flags can be
accessed by all tasks, the task flags are used for notifications to a
single receiving task. The most common operations that can be
performed on task flags are:

• Set/clear flags of a specific task

• Wait on a flag to take a specific value

• An example API for using task flags can be found in
the CMSIS standard, the term used there is thread flags. In FreeRTOS
these types of flags are defined as task notifications.

https://www.keil.com/pack/doc/cmsis/RTOS2/html/group__CMSIS__RTOS__ThreadFlagsMgmt.html
https://www.freertos.org/RTOS-task-notifications.html

Signals
Task Flags

Overview of ARM Architecture

• ARM Holdings Inc. is a fabless semiconductor company that develops
processors, system-on-chips, softwares etc. ARM was founded as
Advanced RISC Machines in 1990 as RISC is the main CPU design strategy
implemented in its processors.

• ARM is the world’s leading provider of RISC based microprocessor
solutions and other semiconductor IP’s with more than 85 billion ARM
based chips being shipped to date.

• Like other microprocessor companies like Intel, Freescale, Hitachi etc.,
ARM doesn’t manufacture processors or other semiconductor devices
but rather licenses the semiconductor cores as Intellectual Property (IP)
to other semiconductor companies like ATMEL, Phillips (now NXP),
Samsung etc. The important IP’s of ARM include its low power, low cost,
high efficient RISC microprocessors, system on chips and other
peripherals.

• Apart from processors and IP Cores, ARM also provides comprehensive
software development tools like Keil and DS-5 for developing complete
systems based on ARM microcontrollers and system on chips.

• Today, ARM Processors are found in almost any domain like handheld
devices, consumer electronics, robotics, automation, etc. Processors
developed from ARM IP’s are used in embedded systems like smart TV’s,
smart watches, smart phones, tablet computers, etc.

Features of ARM

• ARM Processors are based on reduced instruction set computing (RISC)
architecture. But based on the requirements of the embedded systems,
some amendments to the RISC architecture are made.

• ARM Processors follow Load and Store type architecture where the data
processing is performed only on the contents of the registers rather than
directly on the memory. The instructions for data processing on registers
are different from that access the memory.

• The instruction set of ARM is uniform and fixed in length. 32-bit ARM
Processors have two instruction sets: general 32-bit ARM Instruction Set
and 16-bit Thumb Instruction Set.

• ARM supports multiple stages of pipeline to speed up the flow of
instructions. In a simple three stage pipeline, the instructions follow three
stages: fetch, decode and execute.

Features of ARM
• Some of the general features of ARM

are listed here.

➢ARM Processors have a good speed of
execution to power consumption ratio.

➢They have a wide range of clock
frequency ranging from 1MHz to few
GHz.

➢They support direct execution of Java
bytecodes using ARM’s Java Jazelle DBX.

➢ARM Processors have built in hardware
for debugging.

➢Supports enhanced instructions for DSP
operations.

ARM Processor Family
• ARM has several processors that are

grouped into number of families
based on the processor core they are
implemented with.

• The architecture of ARM processors
has continued to evolve with every
family. Some of the famous ARM
Processor families are ARM7, ARM9,
ARM10 and ARM11.

• The following table shows some of
the commonly found ARM Families
along with their architectures.

ARM Family Architecture

ARM7TDMI ARMv4T

ARM9E ARMv5TE

ARM11 ARMv6

Cortex-M ARMv7-M

Cortex-R ARMv7R

Cortex-A (32-bit) ARMv7-A

Cortex-A (64-bit) ARMv8-A

ARM Overview
• ARM follows the nomenclature shown in the below figure to describe

the processor implementations. ARM Nomenclature

The letters or words after “ARM” are used to indicate the features of a processor.
•x – Family or series
•y – Memory Management/Protection Unit
•z – Cache
•T – 16 bit Thumb decoder
•D – JTAG Debugger
•M – Fast Multiplier
•I – Embedded In-circuit Emulator (ICE) Macrocell
•E – Enhanced Instructions for DSP (assumes TDMI)
•J – Jazelle (for accelerated JAVA execution)
•F – Vector Floating-point Unit
•S – Synthesizable Version

ARM Overview-Explanation of the features
• Explanation of the features

• T – Thumb Instruction Set

• ARM Processors support both the 32-bit ARM Instruction Set and 16-bit Thumb
Instruction Set. The original 32-bit ARM Instructions consists of 32-bit opcodes which
turns out to be a 4-byte binary pattern. 16-bit Thumb Instructions consists of 16-bit
opcodes or 2-byte binary pattern to improve the code density.

• D – JTAG Debug

• JTAG is a serial protocol used by ARM to transfer the debug information between the
processor and the test equipment.

• M – Fast Multiplier

• Older ARM Processors used a small and simple multiplier unit. This multiplier unit
required more clock cycles to complete a single multiplication. With the introduction of
Fast Multiplier unit, the clock cycles required for multiplication are significantly reduced
and modern ARM Processors are capable of calculating a 32-bit product in a single cycle.

• I – Embedded ICE Macrocell

• ARM Processors have on-chip debug hardware that allows the processor to set
breakpoints and watchpoints.

ARM Overview-Explanation of the features

• E – Enhanced Instructions

• ARM Processors with this mode will support the extended DSP Instruction Set for high
performance DSP applications. With these extended DSP instructions, the DSP performance of
the ARM Processors can be increased without high clock frequencies.

• J – Jazelle

• ARM Processors with Jazelle Technology can be used in accelerated execution of Java bytecodes.
Jazelle DBX or Direct Bytecode eXecution is used in mobile phones and other consumer devices
for high performance Java execution without affecting memory or battery.

• F – Vector Floating-point Unit

• The Floating Point Architecture in ARM Processors provide execution of floating point arithmetic
operations. The Dynamic Range and Precision offered by the Floating Point Architecture in ARM
Processors are used in many real time applications in the industrial and automotive areas.

• S – Synthesizable

• The ARM Processor Core is available as source code. This software core can be compiled into a
format that can be easily understood by the EDA Tools. Using the processor source code, it is
possible to modify the architecture of the ARM Processor.

• An example in ARM7 family of processors is the ARM7TDMI-S architecture based LPC2148
Processor.

ARM Processors
• ARM Processors can be divided into ARM Classic Processors, ARM

Embedded Processors and ARM Application Processors.

ARM Processors
• ARM Classic processors include

ARM7, ARM9 and ARM11
families and ARM7TMDI is still
the highest shipping 32-bit
processor. ARM7 based
processors are still used in
many small and simple 32-bit
devices.

Even though ARM7 or other classic ARM Processors can be used for small scale embedded systems, newer
embedded systems are built using the advanced ARM embedded processors or the Cortex-M processors and
Cortex-R Processors.

ARM Processors
• ARM Cortex-M Processors have a

Microcontroller profile while the
Cortex-R Processors have a Real
time profile.

• ARM Cortex-M Processors are
energy efficient, simple to
implement and are mainly
developed for advanced
embedded applications. ARM
Cortex-M Processors are further
divided into several processor
cores like Cortex-M0, Cortex-
M0+, Cortex-M3, Cortex-M4 and
Cortex-M7.

ARM Processors
• ARM Cortex-R Series of processors provide solution for real time

embedded systems. They provide high reliability, high fault tolerance
and real time responses. Cortex-R series of processors are used in
systems where high performance is required and timing deadlines are
important.

• The Cortex-R family includes the processor cores like Cortex-R4,
Cortex-R5, Cortex-R7 and Cortex-R8.

• ARM Cortex-A Series of processors are the highest performance
processors from ARM. They are used in powerful mobile devices,
compelling technology products like network devices, consumer
appliances, automation systems, automobiles and other embedded
systems.

ARM Processors

• The Cortex-A Processors are again divided into high performance, high
efficiency and ultra-high efficiency type processors. Each sub division has
several types of processor cores.

Programmer’s model and Development Tools

• Separate PPT

References
• https://www.guru99.com/real-time-operating-system.html

• https://www.highintegritysystems.com/rtos/what-is-an-rtos/

• https://electricalfundablog.com/rtos-real-time-operating-system/

• https://www.engineersgarage.com/rtos-real-time-operating-system/

• https://digitalthinkerhelp.com/what-is-multitasking-operating-system-with-their-examples-
types/

• https://www.geeksforgeeks.org/difference-between-multitasking-multithreading-and-
multiprocessing/

• https://science.jrank.org/computer-science/Multitasking_Operating_Systems.html

• https://open4tech.com/rtos-task-context-switching/

• https://interrupt.memfault.com/blog/cortex-m-rtos-context-switching

• https://www.electronicshub.org/arm-introduction/

• https://www.watelectronics.com/arm-processor-architecture-working/

• https://www.geeksforgeeks.org/arm-processor-and-its-features/

• https://www.cs.ccu.edu.tw/~pahsiung/courses/ese/notes/ESD_04_ARM_Tools.pdf

https://www.guru99.com/real-time-operating-system.html
https://www.highintegritysystems.com/rtos/what-is-an-rtos/
https://electricalfundablog.com/rtos-real-time-operating-system/
https://digitalthinkerhelp.com/what-is-multitasking-operating-system-with-their-examples-types/
https://digitalthinkerhelp.com/what-is-multitasking-operating-system-with-their-examples-types/
https://www.geeksforgeeks.org/difference-between-multitasking-multithreading-and-multiprocessing/
https://www.geeksforgeeks.org/difference-between-multitasking-multithreading-and-multiprocessing/
https://science.jrank.org/computer-science/Multitasking_Operating_Systems.html
https://open4tech.com/rtos-task-context-switching/
https://interrupt.memfault.com/blog/cortex-m-rtos-context-switching
https://www.electronicshub.org/arm-introduction/
https://www.watelectronics.com/arm-processor-architecture-working/
https://www.geeksforgeeks.org/arm-processor-and-its-features/
https://www.cs.ccu.edu.tw/~pahsiung/courses/ese/notes/ESD_04_ARM_Tools.pdf

References

• https://ocw.aoc.ntua.gr/modules/document/file.php/ECE102/%CE%A
3%CE%B7%CE%BC%CE%B5%CE%B9%CF%8E%CF%83%CE%B5%CE%B9
%CF%82%20%CE%9C%CE%B1%CE%B8%CE%AE%CE%BC%CE%B1%CF
%84%CE%BF%CF%82/ARM_Programmer_s_Model.pdf

• https://www.eetimes.com/intro-to-real-time-operating-systems/

• https://www.slideshare.net/phzope75/unit-4-rev

• https://www.guru99.com/inter-process-communication-ipc.html

• https://open4tech.com/communication-between-rtos-tasks/

https://ocw.aoc.ntua.gr/modules/document/file.php/ECE102/%CE%A3%CE%B7%CE%BC%CE%B5%CE%B9%CF%8E%CF%83%CE%B5%CE%B9%CF%82%20%CE%9C%CE%B1%CE%B8%CE%AE%CE%BC%CE%B1%CF%84%CE%BF%CF%82/ARM_Programmer_s_Model.pdf
https://ocw.aoc.ntua.gr/modules/document/file.php/ECE102/%CE%A3%CE%B7%CE%BC%CE%B5%CE%B9%CF%8E%CF%83%CE%B5%CE%B9%CF%82%20%CE%9C%CE%B1%CE%B8%CE%AE%CE%BC%CE%B1%CF%84%CE%BF%CF%82/ARM_Programmer_s_Model.pdf
https://ocw.aoc.ntua.gr/modules/document/file.php/ECE102/%CE%A3%CE%B7%CE%BC%CE%B5%CE%B9%CF%8E%CF%83%CE%B5%CE%B9%CF%82%20%CE%9C%CE%B1%CE%B8%CE%AE%CE%BC%CE%B1%CF%84%CE%BF%CF%82/ARM_Programmer_s_Model.pdf
https://ocw.aoc.ntua.gr/modules/document/file.php/ECE102/%CE%A3%CE%B7%CE%BC%CE%B5%CE%B9%CF%8E%CF%83%CE%B5%CE%B9%CF%82%20%CE%9C%CE%B1%CE%B8%CE%AE%CE%BC%CE%B1%CF%84%CE%BF%CF%82/ARM_Programmer_s_Model.pdf
https://www.eetimes.com/intro-to-real-time-operating-systems/
https://www.slideshare.net/phzope75/unit-4-rev

Unit-2

Scheduling Algorithms

Scheduling Process
• Scheduling is the process of deciding which task should be executed

at any point in time based on a predefined algorithm. The logic for
the scheduling is implemented in a functional unit called the
scheduler. The scheduling process is not present only in RTOS, it can
be found in one form or another even in simple “bare-bone”
applications.

• Different RTOS distributions may support a variety of scheduling
algorithms. It is important that we choose the algorithm before the
development of the user application starts. Like many things in the
engineering field, there is not a universal algorithm that is suitable for
every use case. There are always trade-offs. In this case, they are
mainly related to speed (response times), implementation complexity,
etc. The chosen algorithm should always enable the timing
requirements of the tasks to be met.

Categories of Scheduling Algorithms
• Offline Scheduling Algorithm

• Offline scheduling algorithm selects a task to execute with reference to a predetermined
schedule, which repeats itself after specific interval of time. For example, if we have three
tasks Ta, Tb and Tc then Ta will always execute first, then Tb and after that Tc respectively.

• Online Scheduling Algorithm

• In Online scheduling a task executes with respect to its priority, which is determined in real
time according to specific rule and priorities of tasks may change during execution. The
online line scheduling algorithm has two types. They are more flexible because they can
change the priority of tasks on run time according to the utilization factor of tasks.

• Fixed priority algorithms

• In fixed priority if the kth job of a task T1 has higher priority than the kth job of task T2
according to some specified scheduling event, then every job of T1 will always execute first
then the job of T2 i.e. on next occurrence priority does not change. More formally, if job
J(1,K) of task T1 has higher priority than J(2,K) of task T2 then J(1,K+1) will always has
higher priority than of J(2,K+1) . One of best example of fixed priority algorithm is rate
monotonic scheduling algorithm.

• Dynamic priority algorithms

• In dynamic priority algorithm, different jobs of a task may have different priority on next
occurrence, it may be higher or it may be lower than the other tasks. One example of a
dynamic priority algorithm is the earliest deadline first algorithm.

Scheduling Algorithms

Static Scheduling :

➢All Scheduling decisions at

compile time.

➢Temporal tasks structure fixed.

Precedence and mutual exclusion

satisfied by the schedule (implicit

synchronization).

➢One Solution is sufficient.

➢Any solution is a sufficient

schedulability test.

Benefits :

➢Simplicity

Scheduling Algorithms
Static Vs. Dynamic

Dynamic Scheduling :

➢All Scheduling decisions at run time.

➢Based upon set of ready tasks.

➢Mutual Exclusion and

synchronization enforced by explicit

synchronization constructs.

Benefits :

➢Flexibility.

➢Only actually used resources are

clamied.

Disadvantages :

➢Guarantees difficult to support.

➢Computational resources required for

scheduling.

Preemptive Scheduling :

➢Event Driven

➢Each event causes interruption

of running tasks.

➢Choice of running tasks

reconsidered after each

interruption.

Benefits :

➢Can minimize response time to

events.

Disadvantages :

➢Requires considerable

computational resources for

scheduling.

Scheduling Algorithms
Preemptive Vs. Non-Preemptive

Non-Preemptive Scheduling :

➢Tasks remain active till completion.

➢Scheduling decisions only

made after task completion.

Benefits :

➢Reasonable when

task execution times ~= task

switching times.

➢Less computational resources

needed for scheduling.

Disadvantages :

➢Can leads to starvation (not met

the deadline). Especially for those

real time tasks (or high priority

tasks).

Scheduling Algorithms in RTOS

1. Clock Driven Scheduling

2. Weighted Round Robin Scheduling

3. Priority Scheduling (Greedy/List/Event Driven)

Scheduling Algorithms in RTOS

1. Clock Driven Scheduling

➢ All parameters about jobs (release time/execution time/deadline)

known in advance.

➢ Schedule can be computed offline or at some regular time instances.

➢ Minimal runtime overhead.

➢ Not suitable for many applications.

2. Weighted Round Robin Scheduling

➢ Jobs scheduled in FIFO manner.

➢ Time quantum given to jobs is proportional to it’s weight.

➢ Example use: High speed switching network

➢ QoS guarantee.

➢ Not suitable for precedence constrained jobs.

➢ Job A can run only after Job B. No point in giving time quantum to

Job B before Job A.

3. Priority Scheduling (Greedy/List/Event Driven)

➢ Processor never left idle when there are ready tasks.

➢ Processor allocated to processes according to priorities.

➢ Priorities

➢ Static (at design time

➢ Dynamic (at Run time)

Scheduling Algorithms in RTOS

Priority Scheduling
➢ Earliest Deadline First (EDF)

➢ Process with earliest deadline given highest priority

➢ Least Slack Time First (LSF)

➢ Slack =relative deadline-execution left

➢ Rate Monotonic Scheduling(RMS)

➢ For periodic tasks

➢ Tasks priority inversely proportional to it’s period

Types of Scheduling Algorithms

• 1. Pre-Emption Scheduling Algorithm

• 2. Non-Preemption Scheduling Algorithms

Preemptive Scheduling
• Preemptive scheduling allows the interruption of a currently running task, so

another one with more “urgent” status can be run.

• The interrupted task is involuntarily moved by the scheduler from running state to
ready state. This dynamic switching between tasks that this algorithm employs is, in
fact, a form of multitasking. It requires assigning a priority level for each task.

• A running task can be interrupted if a task with a higher priority enters the queue.

Preemptive Scheduling

k Name Arrival Time [μs] Execute Time [μs]

Task 1 10 50

Task 2 40 50

Task 3 60 40

As an example let’s have three tasks called Task 1, Task 2 and Task 3. Task 1 has the lowest

priority and Task 3 has the highest priority. Their arrival times and execute times are listed in the

table below.

In Fig. 1 we can see that Task 1 is the first to start executing, as it is the first one to arrive (at t = 10

μs). Task 2 arrives at t = 40μs and since it has a higher priority, the scheduler interrupts the

execution of Task 1 and puts Task 2 into running state. Task 3 which has the highest priority arrives

at t = 60 μs. At this moment Task 2 is interrupted and Task 3 is put into running state. As it is the

highest priority task it runs until it completes at t = 100 μs. Then Task 2 resumes its operation as the

current highest priority task. Task 1 is the last to complete is operation.

Non-preemptive Scheduling (Co-Operative
Scheduling)

In non-preemptive scheduling, the scheduler has more restricted control over the tasks. It can only

start a task and then it has to wait for the task to finish or for the task to voluntarily return the control. A

running task can’t be stopped by the scheduler.

• If we take the three tasks specified in the table from the previous chapter and schedule them

using a non-preemptive algorithm we get the behavior shown in Fig. 2. Once started, each task

completes its operation and then the next one starts.

• The non-preemptive scheduling can simplify the synchronization of the tasks, but that is at the

cost of increased response times to events. This reduces its practical use in complex real-time

systems.

Difference between Pre-emptive and Non-Preemptive Scheduling

Preemptive
Non-preemptive

Definition
Processes can use CPU for a

limited time.

Once a process takes CPU it will only

leave it after the completion of task.

Overheads It has overheads It does not have overheads

Flexibility This type of scheduling is flexible. This type of scheduling is non-flexible.

Interrupts

Processing of preemptively

scheduled process can be

interrupted.

Processing of non-preemptive

scheduling cannot be interrupted.

Cost

Preemptive processes are

directly related to the cost of the

system.

Non-preemptive processes are not

related to the cost of system in any

ways.

Scheduling Algorithms

• Processor utilization factor (U)

• For a given task set of n periodic tasks, processor utilization factor U is
the fraction of time that is spent for the execution of the task set. If Si
is a task from task set then Ci/Ti is the time spent by the processor
for the execution of Si . Similarly, for the task set of n periodic tasks

• processor utilization is greater than one then that task set will not be
schedulable by any algorithm. Processor utilization factor tells about
the processor load on a single processor. U=1 means 100% processor
utilization.

RATE MONOTONIC (RM) SCHEDULING ALGORITHM

• The Rate Monotonic scheduling algorithm is a simple rule that assigns
priorities to different tasks according to their time period.

• That is task with smallest time period will have highest priority and a
task with longest time period will have lowest priority for execution.

• As the time period of a task does not change so not its priority
changes over time, therefore Rate monotonic is fixed priority
algorithm. The priorities are decided before the start of execution and
they does not change overtime.

Introduction to RATE MONOTONIC (RM)
SCHEDULING ALGORITHM

• Rate monotonic scheduling Algorithm works on the principle of preemption.
Preemption occurs on a given processor when higher priority task blocked lower
priority task from execution.

• This blocking occurs due to priority level of different tasks in a given task set. rate
monotonic is a preemptive algorithm which means if a task with shorter period
comes during execution it will gain a higher priority and can block or preemptive
currently running tasks.

• In RM priorities are assigned according to time period. Priority of a task is
inversely proportional to its timer period. Task with lowest time period has
highest priority and the task with highest period will have lowest priority. A given
task is scheduled under rate monotonic scheduling Algorithm, if its satisfies the
following equation:

where n is the number of tasks in a task set.

RATE MONOTONIC (RM) SCHEDULING ALGORITHM

• Example of RATE MONOTONIC (RM) SCHEDULING ALGORITHM

• For example, we have a task set that consists of three tasks as follows

Tasks
Release

time(ri)

Execution

time(Ci)

Deadline

(Di)

Time

period(Ti)

T1 0 0.5 3 3

T2 0 1 4 4

T3 0 2 6 6

Table 1. Task set
U= 0.5/3 +1/4 +2/6 = 0.167+ 0.25 + 0.333 = 0.75

RATE MONOTONIC (RM) SCHEDULING ALGORITHM

• As processor utilization is less than 1 or 100% so task set is
schedulable and it also satisfies the above equation of rate monotonic
scheduling algorithm.

Figure 1. RM scheduling of Task set in table 1.
A task set given in table 1 it RM scheduling is given in figure 1. The explanation of
above is as follows

RATE MONOTONIC (RM) SCHEDULING ALGORITHM
• According to RM scheduling algorithm task with shorter period has higher priority

so T1 has high priority, T2 has intermediate priority and T3 has lowest priority. At
t=0 all the tasks are released. Now T1 has highest priority so it executes first till
t=0.5.

• At t=0.5 task T2 has higher priority than T3 so it executes first for one-time units
till t=1.5. After its completion only one task is remained in the system that is T3,
so it starts its execution and executes till t=3.

• At t=3 T1 releases, as it has higher priority than T3 so it preempts or blocks T3
and starts it execution till t=3.5. After that the remaining part of T3 executes.

• At t=4 T2 releases and completes it execution as there is no task running in the
system at this time.

• At t=6 both T1 and T3 are released at the same time but T1 has higher priority
due to shorter period so it preempts T3 and executes till t=6.5, after that T3 starts
running and executes till t=8.

• At t=8 T2 with higher priority than T3 releases so it preempts T3 and starts its
execution.

• At t=9 T1 is released again and it preempts T3 and executes first and at t=9.5 T3
executes its remaining part. Similarly, the execution goes on.

EARLIEST DEADLINE FIRST (EDF) SCHEDULING ALGORITHM

• Earliest deadline first (EDF) is dynamic priority scheduling algorithm for real
time embedded systems.

• Earliest deadline first selects a task according to its deadline such that a
task with earliest deadline has higher priority than others. It means priority
of a task is inversely proportional to its absolute deadline.

• Since absolute deadline of a task depends on the current instant of time so
every instant is a scheduling event in EDF as deadline of task changes with
time.

• A task which has a higher priority due to earliest deadline at one instant it
may have low priority at next instant due to early deadline of another task.

• EDF typically executes in preemptive mode i.e. currently executing task is
preempted whenever another task with earliest deadline becomes active.

EARLIEST DEADLINE FIRST (EDF) SCHEDULING ALGORITHM

• EDF is an optimal algorithm which means if a task set is feasible then
it is surely scheduled by EDF.

• Another thing is that EDF does not specifically take any assumption
on periodicity of tasks so it is independent of Period of task and
therefore can be used to schedule aperiodic tasks as well.

• If two tasks have same absolute deadline choose one of them
randomly.

EARLIEST DEADLINE FIRST (EDF) SCHEDULING ALGORITHM

• Example of EARLIEST DEADLINE FIRST (EDF) SCHEDULING ALGORITHM

• An example of EDF is given below for task set of table-2.

Tas

k

Release

time(ri)

Execution

Time(Ci)

Deadline

(Di)

Time

Period(Ti)

T1 0 1 4 4

T2 0 2 6 6

T3 0 3 8 8

Table 2. Task set
U= 1/4 +2/6 +3/8 = 0.25 + 0.333 +0.375 = 0.95 = 95%
As processor utilization is less than 1 or 100% so task
set is surely schedulable by EDF.

Figure 2. Earliest deadline first scheduling of task set in Table -2

EARLIEST DEADLINE FIRST (EDF) SCHEDULING ALGORITHM

• At t=0 all the tasks are released, but priorities are decided according to
their absolute deadlines so T1 has higher priority as its deadline is 4 earlier
than T2 whose deadline is 6 and T3 whose deadline is 8, that’s why it
executes first.

• At t=1 again absolute deadlines are compared and T2 has shorter deadline
so it executes and after that T3 starts execution but at t=4 T1 comes in the
system and deadlines are compared, at this instant both T1 and T3 has
same deadlines so ties are broken randomly so we continue to execute T3.

• At t=6 T2 is released, now deadline of T1 is earliest than T2 so it starts
execution and after that T2 begins to execute. At t=8 again T1 and T2 have
same deadlines i.e. t=16, so ties are broken randomly an T2 continues its
execution and then T1 completes. Now at t=12 T1 and T2 come in the
system simultaneously so by comparing absolute deadlines, T1 and T2 has
same deadlines therefore ties broken randomly and we continue to
execute T3.

EARLIEST DEADLINE FIRST (EDF) SCHEDULING ALGORITHM

• At t=13 T1 begins it execution and ends at t=14. Now T2 is the only
task in the system so it completes it execution.

• At t=16 T1 and T2 are released together, priorities are decided
according to absolute deadlines so T1 execute first as its deadline is
t=20 and T3’s deadline is t=24.After T1 completion T3 starts and
reaches at t=17 where T2 comes in the system now by deadline
comparison both have same deadline t=24 so ties broken randomly
ant we T continue to execute T3.

• At t=20 both T1 and T2 are in the system and both have same
deadline t=24 so again ties broken randomly and T2 executes. After
that T1 completes it execution. In the same way system continue to
run without any problem by following EDF algorithm.

EARLIEST DEADLINE FIRST (EDF) SCHEDULING ALGORITHM

• Transient Over Load Condition & Domino Effect in Earliest deadline first

• Transient over load is a short time over load on the processor. Transient
overload condition occurs when the computation time demand of a task
set at an instant exceeds the processor timing capacity available at that
instant.

• Due to transient over load tasks miss their deadline. This transient over
load may occur due many reasons such as changes in the environment,
simultaneous arrival of asynchronous jobs, system exception.

• operating systems under EDF, whenever a task in Transient overload
condition miss its deadline and as result each of other tasks start missing
their deadlines one after the other in sequence, such an effect is called
domino effect. It jeopardizes the behavior of the whole system. An example
of such condition is given below.

EARLIEST DEADLINE FIRST (EDF) SCHEDULING ALGORITHM

Task
Release

time(ri)

Execution

Time(Ci)

Deadline

(Di)
Period(Ti)

T1 0 2 5 5

T2 0 2 6 6

T3 0 2 7 7

T4 0 2 8 8

Figure 3. Domino effect under
Earliest deadline first

EARLIEST DEADLINE FIRST (EDF) SCHEDULING
ALGORITHM

• As in the above figure at t=15 T1 misses it deadline and after that at
t=16 T4 is missing its deadline then T2 and finally T3 so the whole
system is collapsed. It is clearly proved that EDF has a shortcoming
due to domino effect and as a result critical tasks may miss their
deadlines.

• The solution of this problem is another scheduling algorithm that is
least laxity first (LLF). It is an optimal scheduling algorithm. Demand
bound function ad Demand bound analysis are also used for
schedualability analysis of given set of tasks.

Advantages and Disadvantages of EDF over
rate monotonic

• Advantages of EDF over rate monotonic

• No need to define priorities offline

• It has less context switching than rate monotonic

• It utilize the processor maximum up to 100% utilization factor as compared to
rate monotonic

• Disadvantages of EDF over rate monotonic

• It is less predictable. Because response time of tasks are variable and response
time of tasks are constant in case of rate monotonic or fixed priority
algorithm.

• EDF provided less control over the execution

• It has high overheads

LEAST LAXITY FIRST (LLF) SCHEDULING ALGORITHM
• Least Laxity First (LLF) is a job level dynamic priority scheduling

algorithm. It means that every instant is a scheduling event because
laxity of each task changes on every instant of time.

• A task which has least laxity at an instant, it will have higher priority
than others at this in

• More formally, priority of a task is inversely proportional to its run
time laxity. As the laxity of a task is defined as its urgency to execute.
Mathematically it is described as

LEAST LAXITY FIRST (LLF) SCHEDULING ALGORITHM

• Here di is the deadline of a task, Ci is the worst-case execution
time(WCET) and Li is laxity of a task. It means laxity is the time
remaining after completing the WCET before the deadline arrives. For
finding the laxity of a task in run time current instant of time also
included in the above formula.

Here is the current instant of time and is the remaining WCET of the task.
By using the above equation laxity of each task is calculated at every instant
of time, then the priority is assigned. One important thing to note is that
laxity of a running task does not changes it remains same whereas the laxity
all other tasks is decreased by one after every one-time unit.

LEAST LAXITY FIRST (LLF) SCHEDULING ALGORITHM
• Example of Least Laxity first scheduling Algorithm

• An example of LLF is given below for a task set.

Task
Release

time(ri)

Execution

Time(Ci)

Deadline

(Di)
Period(Ti)

T1 0 2 6 6

T2 0 2 8 8

T3 0 3 10 10

Figure 4. LLF scheduling algorithm

LEAST LAXITY FIRST (LLF) SCHEDULING ALGORITHM
• 1. At t=0 laxities of each task are calculated by using equation 4.2. as

• L1 = 6-(0+2) =4
• L2 = 8-(0+2) =6
• L3= 10-(0+3) =7

• As task T1 has least laxity so it will execute with higher priority. Similarly, At t=1 its
priority is calculated it is 4 and T2 has 5 and T3 has 6, so again due to least laxity
T1 continue to execute.

• 2. At t=2 T1is out of the system so Now we compare the laxities of T2 and T3 as
following
• L2= 8-(2+2) =4
• L3= 10-(2+3) =5

• Clearly T2 starts execution due to less laxity than T3. At t=3 T2 has laxity 4 and T3
also has laxity 4, so ties are broken randomly so we continue to execute T2. At t=4
no task is remained in the system except T3 so it executes till t=6. At t=6 T1 comes
in the system so laxities are calculated again
• L1 = 6-(0+2) =4
• L3= 10-(6+1) =3

LEAST LAXITY FIRST (LLF) SCHEDULING ALGORITHM

• So T3 continues its execution.

• At t=8 T2 comes in the system where as T1 is running task. So at this instant
laxities are calculated

• L1 = 12-(8+1) =3

• L2= 16-(8+2) =6

• o T1 completes its execution. After that T2 starts running and at t=10 due to laxity
comparison T2 has higher priority than T3 so it completes it execution.

• L2= 16-(10+1) =5

• L3= 20-(10+3) =7

• t=11 only T3 in the system so it starts its execution.

• At t=12 T1 comes in the system and due to laxity comparison at t=12 T1 wins the
priority and starts its execution by preempting T3. T1 completes it execution and
after that at t=14 due to alone task T3 starts running its remaining part. So, in this
way this task set executes under LLF algorithm.

LEAST LAXITY FIRST (LLF) SCHEDULING ALGORITHM

• LLF is an optimal algorithm because if a task set will pass utilization
test then it is surely schedulable by LLF. Another advantage of LLF is
that it some advance knowledge about which task going to miss its
deadline.

• On other hand it also has some disadvantages as well one is its
enormous computation demand as each time instant is a scheduling
event. It gives poor performance when more than one task has least
laxity.

Enhanced Least Laxity First (LLF) Scheduling Algorithm
• LLF is good for avoiding transient overload and domino effect occurring in

EDF. But it also has a shortcoming, that is thrashing. When more than one
task has least laxity than this phenomenon of Thrashing occurs.

• Thrashing is the behavior of preemption by the tasks one another at each
time tick. This kind of preemption results in context switch at each instant
of time.

• This context switching results in more computation power consumption as
switching from one task to another which result in saving and loading
registers, memory mapping and updating many tables and lists. So, it
results in loss of computation time as well.

• To overcome this short come of LLF an improved version of LLF is
introduced that is Enhanced least laxity first scheduling algorithm (ELLF). IN
ELLF whenever more than one task has least laxity than they all are
grouped together and EDF is applied within the group whereas taking this
group as a single task LLF is applied to this group and other remaining tasks
in the task set.

Enhanced Least Laxity First (LLF) Scheduling Algorithm

• An example of LLF with thrashing is given below

Task
Release

time(ri)

Execution

Time(Ci)

Deadline

(Di)
Period(Ti)

T1 0 3 12 7

T2 0 4 13 10

T3 0 5 14 12

Enhanced Least Laxity First (LLF) Scheduling
Algorithm

• So, to overcome this context switching due to thrashing We employ
ELLF on the same example by grouping together the tasks having
same least laxity, then apply EDF to avoid context switching.

Popular Scheduling Algorithms
• Some of the most popular scheduling algorithms that are used in CPU

scheduling. Not all of them are suitable for use in real-time
embedded systems. Currently, the most used algorithms in practical
RTOS are non-preemptive scheduling, round-robin scheduling,
and preemptive priority scheduling.

• First Come, First Served (FCFS)

• FCFS is a non-preemptive scheduling algorithm that has no priority
levels assigned to the tasks. The task that arrives first into the
scheduling queue (i.e enters ready state), gets put into the running
state first and starts utilizing the CPU. It is a relatively simple
scheduling algorithm where all the tasks will get executed eventually.
The response time is high as this is a non-preemptive type of
algorithm.

Popular Scheduling Algorithms
• Shortest Job First (SJF)

• In the shortest job first scheduling algorithm, the scheduler must
obtain information about the execution time of each task and it then
schedules the one with the shortest execution time to run next.

• SJF is a non-preemptive algorithm, but it also has a preemptive
version. In the preemptive version of the algorithm (aka shortest
remaining time) the parameter on which the scheduling is based is
the remaining execution time of a task. If a task is running it can be
interrupted if another task with shorter remaining execution time
enters the queue.

• A disadvantage of this algorithm is that it requires the total execution
time of a task to be known before it is run.

Popular Scheduling Algorithms
• Priority Scheduling

• Priority scheduling is one of the most popular scheduling algorithms.
Each task is assigned a priority level. The basic principle is that the
task with the highest priority will be given the opportunity to use the
CPU.

• In the preemptive version of the algorithm, a running task can be
stopped if a higher priority task enters the scheduling queue. In the
non-preemptive version of the algorithm once a task is started it can’t
be interrupted by a higher priority task.

• Of course, not all tasks can have unique priority levels and there will
always be tasks that have the same priority. Different approaches can
be used for handling the scheduling of those tasks (e.g FCFS
scheduling or round-robin scheduling).

Popular Scheduling Algorithms
• Round-Robin Scheduling

• Round-robin is a preemptive type of scheduling algorithm. There are
no priorities assigned to the tasks. Each task is put into a running
state for a fixed predefined time. This time is commonly referred to as
time-slice (aka quantum). A task can not run longer than the time-
slice. In case a task has not completed by the end of its dedicated
time-slice, it is interrupted, so the next task from the scheduling
queue can be run in the following time slice. A pre-emptied task has
an opportunity to complete its operation once it’s again its turn to
use a time-slice.

• An advantage of this type of scheduling is its simplicity and relatively
easy implementation.

References

• https://www.slideshare.net/ajal4u/realtime-scheduling-algorithms

• https://microcontrollerslab.com/scheduling-algorithm-real-time/

• https://open4tech.com/rtos-scheduling-algorithms/

https://microcontrollerslab.com/scheduling-algorithm-real-time/

School of Electrical and Computer

Engineering N.T.U.A.

ARM

Programmer’s
Model

Embedded System Design

Ioannis Koutras

Dimitrios Soudris

Microprocessors and Digital Systems

Lab, ECE, NTUA

Άδεια Χρήσης

Το παρόν εκπαιδευτικό υλικό υπόκειται σε
άδειες χρήσης Creative Commons.

Για εκπαιδευτικό υλικό, όπως εικόνες, που
υπόκειται σε άδεια χρήσης άλλου τύπου,
αυτή πρέπει να αναφέρεται ρητώς.

ARM Ltd.

) Founded in November 1990

) Does not fabricate processors itself

) Licenses ARM core designs to semiconductor partners who

fabricate and sell to their customers

) Also develops technologies to assist with the designing of the
ARM architecture

• Software tools
• Development boards, debug hardware
• Bus architectures, peripherals

ARM as a RISC architecture

) ARM confronts to the Reduced Instruction Set Computer

(RISC) architecture.

) A typical RISC system is defined:
• Load / Store model

o Operations on registers and not directly on memory
o All data must be loaded into registers before they can be

operated on.

• Fixed instruction length
• Small number of addressing modes
• A large set of general-purpose registers that can hold either

data or an address.

) However, ARM is not a pure RISC architecture:

• Conditional execution of most instructions
• Arithmetic instructions alter condition codes only when desired.
• Addition of a 32-bit barrel shifter before instruction execution

ARM Organization and Implementation

The Bigger Picture

Register file

Main

memory

(DRAM)

Memory

bridge
Bus interface

L2 cache

(SRAM)

ALU

Cache bus System bus Memory bus

L1
cache

(SRAM)

Source: R. Bryant, D. O’Hallaron, Computer Systems: A Programmer’s Perspective

ARM Organization and Implementation – AMBA

The important aspect of a SoC is not only which components or

blocks it houses, but also how they are interconnected.

AMBA Specification

) The Advanced Microcontroller Bus Architecture was

introduced in 1996 and is widely used as the on-chip bus in

System-on-a-chip (SoC) designs processors.

) AMBA Goals:

• Technology independence
• To encourage modular system design

) The AMBA 3.0 specification define five buses/interfaces:

• Advanced eXtensible Interface (AXI)
• Advanced High-performance Bus (AHB)
• Advanced System Bus (ASB)
• Advanced Peripheral Bus (APB)
• Advanced Trace Bus (ATB)

) ARM provides ARMA Design Kit (ADK) as a generic,

stand-alone environment to enable the rapid creation of

AMBA-based components and System-on-Chip (SoC) designs.

ARM Data Sizes and Instructions

) The ARM is a 32-bit RISC architecture, so in relation to that:

• Byte means 8 bits
• Halfword means 16 bits (two bytes)
• Word means 32 bits (four bytes)

) Most ARM cores implement two instruction sets:

• 32-bit ARM Instruction Set
• 16-bit Thumb Instruction Set

) ARM cores can be configured to view words stored in memory

as either Big-Endian or Little-Endian format.

Big Endian vs. Little Endian

How 0x12345678 would be stored in a 32-bit memory?

78

56

34

120x100

0x101

0x102

0x103 12

34

56

780x100

0x101

0x102

0x103

Big Endian Little Endian

In
cr

ea
si

n
g
 a

d
d
re

ss
es

The ARM programmer’s model

What is a mode?

) Characterized by specific behavior, privileges, associated

registers

) Triggered by some action (e.g. exception, interrupt)

The ARM has seven basic operating modes:

) User: normal program execution mode

) FIQ: used for handling a high priority (fast) interrupt

) IRQ: used for handling a low priority (normal) interrupt

) Supervisor: entered on reset and when a Software Interrupt

instruction is executed

) Abort: used for handling memory access violations

) Undefined: used for handling undefined instructions

) System: a privileged mode that uses the same registers as the

user mode

ARM’s Register Set

ARM has a total of 37 registers, all of which are 32-bit long

) 30 general purpose registers

) 1 dedicated program counter (pc)

) 1 dedicated current program status register (cpsr)

) 5 dedicated saved program status registers (spsr)

In any mode only a subset of the 37 registers are visible

) The hidden registers are called banked registers.

) The current processor mode governs which registers are

accessible.

ARM’s Register Set

Each mode can access

) A particular set of r0-r12 registers

) A particular r13 (the stack pointer, sp) and r14 (the link

register, lr)

) The program counter, r15 (pc)

) The current program status register, cpsr

Privileged modes (except System) can also access

) A particular saved program status register (spsr)

ARM Register Organization

ARM Register Organization

Banked Registers

) Banking of registers implies that the specific register depends

not only on the number (r0, r1, r2 ... r15) but also on the

processor mode

) The values stored in banked registers are preserved across

mode changes.

Example

) Assume that the processor is executing in user mode

) Assume that the processor writes 0 in r0 and 8 in r8.

) Processor changes to FIQ mode

• In FIQ mode the value of r0 is
• If processor overwrites both r0 and r8 with 1 in FIQ mode and

changes back to user mode

o The new value stored in r0 (in user mode) is

o The new value stored in r8 (in user mode) is

ARM Register Organization

Thumb

Thumb is a 16-bit instruction set

) Optimized for code density from C code

) Improved performance from narrow memory

) Subset of the functionality of the ARM instruction set

Core has additional execution state – Thumb

) Switch between ARM and Thumb using BX instruction

For most instructions generated by compiler:

) Conditional execution is not used

) Source and destination registers identical

) Only Low registers used

) Constants are of limited size

) Inline barrel shifter not used

Current Program Status Register

) Current Program Status Register (cpsr) is a dedicated register

) Holds information about the most recently performed ALU

operation

) Controls the enabling and disabling of interrupts (both IRQ

and FIQ)

) Sets the processor operating mode

) Sets the processor state

Mode
N Z C V

2831 8 4 O

I F

Current Program Status Register

Mode

31 28

N Z C V

8 4 O

I F

) cpsr has two important pieces of
information:

• Flags: contains the condition

flags
• Control: contains the processor

mode, state and interrupt mask
bits

) All fields of the cpsr can be

read/written in privileged modes

) Only the flag field of cpsr can be

written in User mode, all fields can

be read in User mode

M[4:0]

10000

Mode

User

10001 FIQ
10010 IRQ
10011 SVC
10111 Abort
11011 Undefined
11111 System

Current Program Status Register

31 28

N Z C V

8 4 O

I F Mode

) Condition code flags

• N = Negative result from

ALU
• Z = Zero result from ALU

• C = ALU operation
Carried out

• V = ALU operation
oVerflowed

) Sticky Overflow flag – Q
flag

• Architecture 5TE/J only
• Indicates if saturation has

occurred

) Interrupt Disable bits

• I = 1: Disables the IRQ
• F = 1: Disables the FIQ

) T Bit

• Architecture xT only
• T = 0: Processor in ARM

state
• T = 1: Processor in

Thumb state

) Mode bits

• Specify the processor
mode

The ARM Assembly Language

) ARM instrustions can be broadly classified as:

• Data Processing Instructions: manipulate data within the

registers
• Branch Instructions: changes the flow of instructions or call a

subroutine
• Load-Store Instructions: transfer data between registers and

memory
• Software Interrupt Instructions: cause a software interrupt
• Program Status Instructions: read / write the processor status

registers

) All instructions can access r0-r14 directly.

) Most instructions also allow use of the pc.

) Specific instructions to allow access to cpsr and spsr.

Data Processing Instructions

Manipulate data within registers

) Move operations

) Arithmetic operations

) Logical operations

) Comparison operations

) Multiply operations

Appending the S suffix for an instruction, e.g. ADDS

) Signifies that the instruction’s execution will update the flags

in the cpsr

Typical ARM Data Processing Instructions

<Operation> <Cond> {S} Rd Rn ShifterOperand2

) Operation – Specifies the instruction to be performed

Almost all ARM instructions can be conditionally executed

) Cond – Specifies the optional conditional flags which have to

be set under which to execute the instruction

) S bit – Signifies that the instruction updates the conditional

flags

) Rd – Specifies the destination register

) Rn – Specifies the first source operand register

) ShifterOperand2 – Specifies the second source operand

• Could be a register, immediate value, or a shifted register /
immediate value

Some data processing instructions may not specify the destination

register or the source register

Data Processing Instructions

Consist of:

Arithmetic: ADD ADC SUB SBC RSB RSC

Logical: AND ORR EOR BIC

Comparisons: CMP CMN TST TEQ

Data movement: MOV MVN

These instructions only work on registers, NOT memory

Move instructions

) MOV moves a 32-bit value into a register

) MVN moves the NOT of the 32-bit value into a register

Example

BEFORE r5 = 5

r7 = 8

MOV r 7 , r5

AFTER r5 =

r7 =

The Barrel Shifter

Result

Barrel
Shifter

Operand Operand
1 2

ALU

Operand 2 could be:

) Register, optionally with shift operation
• Shift value can be either be:

o Unsigned integer
o Specified in bottom byte of another

register

• Used for multiplication by constant

) Immediate value
• 8 bit number, with a range of 0-255

o Rotated right through even number of

positions

• Allows increased range of 32-bit
constants to be loaded directly into
registers

The ARM Barrel Shifter

) Data processing instructions are

processed within the ALU

) ARM can shift the 32-bit binary

pattern in one of the source

registers left or right by a specific

number of positions before the

value enters the ALU

) Can achieve fast multiplies or

division by a power of 2

) Data-processing instructions that
do not use the barrel shifter:

• MUL (multiply)
• CLZ (count leading zeros)

Rn Rm

Rd

Result N

P
re

-p
ro

ce
ss

in
g

N
o

 p
re

-p
ro

ce
ss

in
g

Arithmetic and Logic
Unit (ALU)

Using the Barrel Shifter

) LSL shifts bits to the left.

) It is similar to the C–language operator «

Example

BEFORE r5 = 5

r7 = 8

MOV r 7 , r 5 , LSL #2

AFTER r5 =

r7 =

Arithmetic Instructions

Addition and subtraction of 32-bit signed and unsigned values

• Subtraction • Addition

Example

BEFORE r0 = 0x00000000

r1 = 0x00000002

r2 = 0x00000001

SUB r 0 , r 1 , r2

AFTER r0 =

r1 =

r2 =

Example

BEFORE r0 = 0x00000000

r1 = 0x00000005

ADD r 0 , r 1 , r 1 , LSL #1

AFTER r0 =

r1 =

Logical Instructions

Bit-wise logical operations on two source registers
AND, ORR, EOR, BIC

• Logical OR • Logical bit clear (BIC)

Example

BEFORE r0 = 0x00000000

r1 = 0x02040608

r2 = 0x10305070

OOR r 0 , r 1 , r2

AFTER r0 =

r1 =

r2 =

Example

BEFORE r1 = 0b1111

r2 = 0b0101

BIC r 0 , r 1 , r2

AFTER r0 =

r1 =

r2 =

Comparison Instructions

) Compare or test a register with a 32-bit value

• CMP, CMN, TEQ, TST

) Registers under comparison are not affected; cpsr updated

) Do not need the S suffix

Example

BEFORE cpsr = nzcvqiFt_USER

r0 = 4

r9 = 4

CMP r 0 , r9

AFTER cpsr =

r0 =

r9 =

Multiply Instructions

) Multiple a pair of registers and optionally add (accumulate)
the value stored in another register
• MUL, MLA

) Special instructions called long multiplies accumulate onto a
pair of registers representing a 64-bit value
• SMLAL, SMULL, UMLAL, UMUL

Example

BEFORE r0 = 0x00000000

r1 = 0x00000002

r2 = 0x00000002

MUL r 0 , r 1 , r2

r0 =

r1 =

r2 =

AFTER

Branch Instructions

) To change the flow of execution or to call a routine

) Supports subroutine calls, if-then-else structures, loops

) Change of execution forces the pc to point to a new address

) Four different branch instructions on the ARM

• B<cond> label

• BL<cond> label

• BX<cond> Rm

• BLX<cond> label | Rm

Condition Mnemonics

Suffix/Mnemonic Description Flags tested

EQ Equal Z=1

NE Not equal Z=0

CS/HS Unsigned higher or same C=1

CC/LO Unsigned lower C=0

MI Minus N=1

PL Positive or Zero N=0

VS Overflow V=1

VC No overflow V=0

HI Unsigned higher C=1 & Z=0

LS Unsigned lower or same C=0 or Z=1

GE Greater or equal N=V

LT Less than N!=V

GT Greater than Z=0 & N=V

LE Less than or equal Z=1 or N=!V

AL Always

Conditional Execution

) Most ARM instructions are conditionally executed

• Instruction executes only if the condition-code flags satisfy a
given test

) Increases performance

• Reduces the number of branches, which reduces the number of
pipeline flushes

) Improves code density

) Two-letter mnemonic appended to the instruction mnemonic

Example usage

An add operation takes the form:
• ADD r0, r1, r2; r0 = r1 + r2

To execute this only if the zero flag is set:
• ADDEQ r0, r1, r2; If zero flag set then r0 = r1 + r2

Value of Conditional Execution
This improves code density and performance by reducing the

number of forward branch instructions

i f (x != 0) CMP r 3 , #0 CMP r 3 , #0

a = b+c; BEQ skip ADDNE r 0 , r 1 , r2

else ADD r 0 , r 1 , r2 SUBEQ r 0 , r 1 , r2

a = b - c; B afterskip

skip

SUB r 0 , r 1 , r2

afterskip

Can also be used to optimize a countdown loop (where the loop

variable decrements from a positive number to zero)

loop

. . .

SUB r 1 , r 1 , #1

CMP r 1 , #0

BNE loop

loop

. . .

SUBS r 1 , r 1 , #1

BNE loop

Single Register Data Transfer

) ARM is based on a “load/store” architecture

• All operands should be in registers
• Load instructions are used to move data from memory into

registers
• Store instructions are used to move data from registers to

memory
• Flexible – allow transfer of a word or a half-word or a byte to

and from memory

LDR/STR

LDRB/STRB

LDRH/STRH

LDRSB

LDRSH

Word

Byte

Half-word

Signed byte load

Signed half-word load
) Syntax:

• LDR<cond><size> Rd, <address>

• STR<cond><size> Rd, <address>

LDR and STR

) LDR and STR instructions can load and store data on a

boundary alignment that is the same as the datatype size

being loaded or stored.

) LDR can only load 32-bit words on a memory address that is

a multiple of 4 bytes – 0, 4, 8, and so on

) LDR r0, [r1]

• Loads register r0 with the contents of the memory address
pointed to by register r1

) STR r0, [r1]

• Stores the contents of register r0 to the memory address
pointed to by register r1

) Register r1 is called the base address register.

Addressing Modes

) ARM provides three addressing modes:

• Preindex with writeback
• Preindex
• Postindex

) Preindex mode useful for accessing a single element in a data

structure

) Postindex and preindex with writeback useful for traversing an

array

Addressing Modes

) Preindex with writeback

• Calculates address from a base register plus address offset
• Updates the address in the base register with the new address
• This is the address used to access memory
• Example: LDR r0, [r1, #4]!

) Preindex

• Same as preindex with writeback, but does not update the
base register

• Example: LDR r0, [r1, #4]

) Postindex

• Only updates the base register after the address is used
• Example: LDR r0, [r1], #4

Examples on Addressing Modes

BEFORE

r0 = 0x00000000

r1 = 0x00009000

mem32[0x00009000] = 0x01010101

mem32[0x00009004] = 0x02020202

Preindexing with writeback

LDR r 0 , [r 1 , #4]!

AFTER

r0 =

r1 =

Preindexing

LDR r 0 , [r 1 , #4]

AFTER

r0 =

r1 =

Postindexing

LDR r 0 , [r 1] , #4

AFTER

r0 =

r1 =

More on Addressing Modes

) Address <address> accessed by LDR/STR is specified by a

base register plus an offset.

) Offset takes one of the three formats:

Immediate Offset is a number that can be added to or subtracted from
the base register.
Example: LDR r0,[r1, #8]; r0 = mem[r1+8]

LDR r0,[r1, #-8]; r0 = mem[r1-8]

Register Offset is a general-purpose register that can be added to or
subtracted from the base register.
Example: LDR r0,[r1, r2]; r0 = mem[r1+r2]

LDR r0,[r1, -r2]; r0 = mem[r1-r2]

Scaled Register Offset is a general-purpose register shifted by an immediate
value and then added to or subtracted from the base register.
Example: LDR r0,[r1, r2, LSL #2]; r0 = mem[r1+4*r2]

LDR r0,[r1, r2, RRX]; r0 = mem[r1+RRX(r2)]

Why assembly?

) Break the conventions of your usual compiler, which might
allow some optimizations

• Example: Temporarily breaking rules about memory allocation,
threading, calling conventions etc.

) Build interfaces between code fragments using incompatible
conventions

• Example: Code produced by different compilers

) Gain access to unusual programming modes of your processor

• Example: 16 bit mode to interface startup

) Produce reasonably fast code for tight loops to cope with a

bad non-optimizing compiler

) Produce hand-optimized code perfectly tuned for your

particular hardware setup, though not to someone else’s

Why Assembly sucks

) Long and tedious to write initially

) Bug-prone and bugs can be very difficult to chase
) Code can be fairly difficult to understand, modify and

maintain.

) Code is non-portable to other architectures.
) Code is optimized only for a certain implementation of a

specific architecture.

) You spend more time on a few details and don’t focus on

algorithmic design, which is where the most optimization

opportunities often lie.

) Small changes in algorithmic design can completely invalidate

all your existing code.

) Commercial optimizing compilers can outperform hand-coded

assembly.

) “Compilers make it a lot easier to use complex data

structures, compilers don’t get bored halfway through, and

generate reliably pretty good code.” John Levine

Middle Ground

From Charles Fiterman on comp.compilers about

Human vs. Computer-generated assembly code:

) The human should always win and here is why.

) First the human writes the whole thing in a high level

language.

) Second he profiles it to find the hot spots where it spends its

time.

) Third he has the compiler produce assembly for those small

sections of code.

) Fourth he hand-tunes them looking for tiny improvements

over the machine generated code.

) The human wins because he can use the machine.

Χρηματοδότηση

Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια
του εκπαιδευτικού έργου του διδάσκοντα.

Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα» του ΕΜΠ έχει
χρηματοδοτήσει μόνο την αναδιαμόρφωση του υλικού.

Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού

Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση»

και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση
(Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους.

ARM Development Tools

ARM Development Tools

• Cross-development

– Windows PC

– UNIX workstation

• Public domain compilers

– gcc

• Commercial compilers

– ARM C Compiler

– IAR C Compiler

ARM Development Tools

• ARM C Compiler

• ARM Assembler

• Linker

• ARMsd

• ARMulator

• ARM Development Board

• Software Toolkit

• JumpStart

The structure of the ARM cross-

development toolkit

assemblerC compiler

C source asm source

.aof

C libraries

linker

.axf

ARMsd

debug

ARMulator

system model

development

board

object
libraries

ARM C Compiler

• ANSI C compliant

• ARM Procedure Call Standard

• Can produce

– ARM object format

– Assembly source output

– Thumb code

ARM Assembler

• Produces ARM object format output

– Can be linked with C compiler output

• Assembly source language

– Near machine-level

– Most assembly instruction → single ARM

Thumb instruction

The Linker

• Resolves symbolic references between

object files

• Extracts object modules from libraries as

needed by program

• Different assembly for RAM, ROM, overlay,

etc.

• Includes debug tables in output file

ARMsd

• ARM symbolic debugger

• For debugging ARM programs
– Running under emulation (ARMulator)

– Running remotely on an ARM development
board
• Need JTAG test interface

– Debugging embedded cores (difficult!)

– Breakpoints / Watchpoints

– Source level debugging

– Original variable names from program

ARMulator

• ARMulator = ARM emulator

• A suite of programs that models the
behavior of ARM processor core in
software on a host system

• Different accuracy levels
– Instruction-accurate

– Cycle-accurate

– Timing-accurate

• VHDL wrapper for interfacing into VHDL
environment

ARM Development Board

• Components and interfaces to support

development of ARM-based systems

• Includes

– An ARM Core (e.g. ARM7TDMI)

– Memory components (e.g. RAM, ROM, …)
– Programmable devices (e.g. FPGA)

• Supports

– HW and SW development

Software Toolkit

• ARM Project Manager

– Graphical front-end for building single library

or executable image

• From source files, object files, library files

– Optimization for code size or execution time

– Output in debug or release form

– Target ARM processor (Thumb support?)

JumpStart

• VLSI Technology, Inc.

• X-Windows interface on workstation

• Same development tools

CSPC702-EMBEDDED SYSTEMS
AND INTERNET OF THINGS(IOT)

UNIT – III Introduction to IoT

Syllabus
• UNIT – III Introduction to IoT

• Defining IoT, characteristics of IoT, physical design of IoT,
logical design of IoT, functional blocks of IoT, communication
models & APIs, machine to machine, difference between IoT
and M2M, software defined network (SDN).

Introduction to IoT
• Internet of things (iot) is a network of physical objects or people

called "things" that are embedded with software, electronics,
network, and sensors that allows these objects to collect and
exchange data. The goal of IoT is to extend to internet connectivity
from standard devices like computer, mobile, tablet to relatively
dumb devices like a toaster.

• IoT makes virtually everything "smart," by improving aspects of our
life with the power of data collection, AI algorithm, and networks.
The thing in IoT can also be a person with a diabetes monitor
implant, an animal with tracking devices, etc.

• Basically, Iot is a network in which all physical objects are
connected to the internet through network devices or routers and
exchange data. IoT allows objects to be controlled remotely across
existing network infrastructure. IoT is a very good and intelligent
technique which reduces human effort as well as easy access to
physical devices. This technique also has autonomous control
feature by which any device can control without any human
interaction.

Introduction to IoT

• The ‘Thing’ in IoT can be any
device with any kind of built-in-
sensors with the ability to collect
and transfer data over a network
without manual intervention.
The embedded technology in the
object helps them to interact
with internal states and the
external environment, which in
turn helps in decisions making
process.

Introduction to IoT

➢ Connecting everyday things embedded with electronics, software, and sensors to internet enabling to collect and

exchange data without human interaction called as the Internet of Things (IoT).

➢ The term "Things" in the Internet of Things refers to anything and everything in day to day life which is accessed or

connected through the internet.

Introduction to IoT

• In a nutshell, IoT is a concept that connects all the devices to the
internet and let them communicate with each other over the
internet. IoT is a giant network of connected devices – all of which
gather and share data about how they are used and the environments
in which they are operated.

• By doing so, each of your devices will be learning from the experience
of other devices, as humans do. IoT is trying to expand the
interdependence in human- i.e interact, contribute and collaborate to
things.

• A developer submits the application with a document containing the
standards, logic, errors & exceptions handled by him to the tester.
Again, if there are any issues Tester communicates it back to the
Developer. It takes multiple iterations & in this manner a smart
application is created.

Example

• Similarly, a room temperature sensor gathers the data and send it
across the network, which is then used by multiple device sensors to
adjust their temperatures accordingly. For example, refrigerator’s
sensor can gather the data regarding the outside temperature and
accordingly adjust the refrigerator’s temperature. Similarly, your air
conditioners can also adjust its temperature accordingly. This is how
devices can interact, contribute & collaborate.

Connecting multiple devices

Historical background of IoT

• 1970- the actual idea of connected devices was proposed

• 1990- John Romkey created a toaster which could be turned on/off
over the internet

• 1995- Siemens introduced the first cellular module built for M2M

• 1999- the term "internet of things" was used by Kevin Ashton during
his work at P&G which became widely accepted

• 2004 - the term was mentioned in famous publications like the
guardian, Boston globe, and scientific American

• 2005-un's international telecommunications union (ITU) published
its first report on this topic.

• 2008- the internet of things was born

• 2011- Gartner, the market research company, include "the internet
of things" technology in their research

Historical background of IoT
• In early 1982 the concept of the network of smart devices was

discussed, with a modified coke machine. This coke machine is modified
at “Carnegie Mellon University” and becoming the first internet-
connected appliance. This machine was able to report its inventory and
whether newly loaded drinks were cold.

• In 1994 Reza Raji explained the idea ofIoT as “small packets of data to a
large set of nodes, so as to integrate and automate everything from
home appliances to entire factories”. After that many companies
proposed various solutions like microsoft’s at work or novell’s nest. Bill joy
proposed device to device (D2D) communication as a part of his
“six webs” frameworks at the world economic forum at davos in 1999.

• The thought of internet of things first became popular in 1999. British
entrepreneur Kevin Ashton first used the term internet of things in 1999
while working at auto-id labs. Besides that near field communication,
barcode scanners, QR code scanners and digital watermarking are the
various devices which are working on IoT in the present scenario.

How IoT works?
• The entire IoT process starts with the devices themselves like

smartphones, smartwatches, electronic appliances like TV, Washing
Machine which helps you to communicate with the IoT platform.

• An IoT System have the following four fundamental components:

• Sensors/Devices

• Connectivity

• Data Processing

• User Interface

How IoT works?
• 1) Sensors/Devices: Sensors or devices are a key component that

helps you to collect live data from the surrounding environment. All
this data may have various levels of complexities. It could be a simple
temperature monitoring sensor, or it may be in the form of the video
feed.

• A device may have various types of sensors which performs multiple
tasks apart from sensing. Example, A mobile phone is a device which
has multiple sensors like GPS, camera but your smartphone is not
able to sense these things.

• 2) Connectivity: All the collected data is sent to a cloud infrastructure.
The sensors should be connected to the cloud using various mediums
of communications. These communication mediums include mobile
or satellite networks, Bluetooth, WI-FI, WAN, etc.

How IoT works?
• 3) Data Processing: Once that data is collected, and it gets to the cloud, the

software performs processing on the gathered data. This process can be just
checking the temperature, reading on devices like AC or heaters. However, it can
sometimes also be very complex like identifying objects, using computer vision on
video.

• 4)User Interface: The information needs to be available to the end-user in some
way which can be achieved by triggering alarms on their phones or sending them
notification through email or text message. The user sometimes might need an
interface which actively checks their IoT system. For example, the user has a
camera installed in his home. He wants to access video recording and all the
feeds with the help of a web server.

• However, it's not always one-way communication. Depending on the IoT
application and complexity of the system, the user may also be able to perform
an action which may create cascading effects.

• For example, if a user detects any changes in the temperature of the refrigerator,
with the help of IoT technology the user should able to adjust the temperature
with the help of their mobile phone.

Features of IOT

• The most important features of IoT on which it works are
connectivity, analyzing, integrating, active engagement, and many
more. Some of them are listed below:

• Connectivity: Connectivity refers to establish a proper connection
between all the things of IoT to IoT platform it may be server or
cloud. After connecting the IoT devices, it needs a high speed
messaging between the devices and cloud to enable reliable, secure
and bi-directional communication.

• Analyzing: After connecting all the relevant things, it comes to real-
time analyzing the data collected and use them to build effective
business intelligence. If we have a good insight into data gathered
from all these things, then we call our system has a smart system.

• Integrating: IoT integrating the various models to improve the user
experience as well.

Features of IOT
• Artificial Intelligence: IoT makes things smart and enhances life through the use

of data. For example, if we have a coffee machine whose beans have going to
end, then the coffee machine itself order the coffee beans of your choice from
the retailer.

• Sensing: The sensor devices used in IoT technologies detect and measure any
change in the environment and report on their status. IoT technology brings
passive networks to active networks. Without sensors, there could not hold an
effective or true IoT environment.

• Active Engagement: IoT makes the connected technology, product, or services to
active engagement between each other.

• Small Devices − Devices, as predicted, have become smaller, cheaper, and more
powerful over time. IoT exploits purpose-built small devices to deliver its
precision, scalability, and versatility.

• Endpoint Management: It is important to be the endpoint management of all the
IoT system otherwise, it makes the complete failure of the system. For example, if
a coffee machine itself order the coffee beans when it goes to end but what
happens when it orders the beans from a retailer and we are not present at home
for a few days, it leads to the failure of the IoT system. So, there must be a need
for endpoint management.

Benefits of IoT
• Since IoT allows devices to be controlled remotely across the internet,

thus it created opportunities to directly connect & integrate the
physical world to the computer-based systems using sensors and
internet.

• The interconnection of these multiple embedded devices will be
resulting in automation in nearly all fields and also enabling advanced
applications.

• This is resulting in improved accuracy, efficiency and economic
benefit with reduced human intervention.

• It encompasses technologies such as smart grids, smart homes,
intelligent transportation and smart cities.

Benefits of IoT
The major benefits of IoT are:

• Improved Customer Engagement – IoT improves customer experience by
automating the action. For e.g. any issue in the car will be automatically
detected by the sensors. The driver, as well as the manufacturer, will be
notified about it. Till the time driver reaches the service station, the
manufacturer will make sure that the faulty part is available at the service
station.

• Technical Optimization – IoT has helped a lot in improving technologies
and making them better. The manufacturer can collect data from different
car sensors and analyze them to improve their design and make them
much more efficient.

• Reduced Waste – Our current insights are superficial, but IoT provides real-
time information leading to effective decision making & management of
resources. For example, if a manufacturer finds fault in multiple engines, he
can track the manufacturing plant of those engines and can rectify the
issue with manufacturing belt.

Applications of IoT
• Energy Applications: The energy rates have raised to a great instinct.

Individuals and organisations, both are searching ways to reduce and
control the consumption. IoT provides a way to not only monitor the
energy usage at the appliance-level but also at the house-level, grid level or
could be at the distribution level. Smart Meters & Smart Grid are used to
monitor energy consumption. It also detects threats to the system
performance and stability, which protect appliances from downtime and
damages.

• Healthcare Application: Smartwatches and fitness devices have changed
the frequency of health monitoring. People can monitor their own health
at regular intervals. Not only this, now if a patient is coming to the hospital
by ambulance, by the time he or she reaches the hospital his health report
is diagnosed by doctors and the hospital quickly starts the treatment. The
data gathered from multiple healthcare applications are now collected and
used to analyze different disease and find its cure.

Applications of IoT
• Education: IoT provides education aids which helps in fulfilling the gaps in

the education industry. It not only improves the quality of education but
also optimizes the cost and improves the management by taking into
consideration students response and performance.

• Government: Governments are trying to build smart cities using IoT
solutions. IoT enhances armed force systems and services. It provides
better security across the borders through inexpensive & high-performance
devices. IoT helps government agencies to monitor data in real-time and
improve their services like healthcare, transportation, education etc.

• Air and Water Pollution: Through various sensors, we can detect the
pollution in the air and water by frequent sampling. This helps in
preventing substantial contamination and related disasters. IoT allows
operations to minimize the human intervention in farming analysis and
monitoring. Systems automatically detect changes in crops, soil,
environment, and more.

Applications of IoT

• Transportation: IoT has changed the transportation sector. Now, we have
self-driving cars with sensors, traffic lights that can sense the traffic and
switch automatically, parking assistance, giving us the location of free
parking space etc. Also, various sensors in your vehicle indicate you about
the current status of your vehicle, so that you don’t face any issues while
travelling.

• Marketing your product: Using IoT, organizations can better analyze &
respond to customer preferences by delivering relevant content and
solutions. It helps in improving business strategies in the real-time.

• Now that we are aware of the powerful IoT solutions that have been
astoundingly impacting various domains, let’s take a deep dive and
understand Raspberry Pi, which is commonly used to prepare IoT solutions.
After understanding Raspberry Pi we will be creating an IoT application.

Application Domains
IoT is currently found in four different popular domains:
1) Manufacturing/Industrial business - 40.2%
2) Healthcare - 30.3%
3) Security - 7.7%
4) Retail - 8.3%

Modern Applications:

• Smart Grids

• Smart cities

• Smart homes

• Healthcare

• Earthquake detection

• Radiation detection/hazardous gas detection

• Smartphone detection

• Water flow monitoring

Challenges of Internet of Things (IoT)
At present IoT is faced with many challenges, such as:

• Insufficient testing and updating

• Concern regarding data security and privacy

• Software complexity

• Data volumes and interpretation

• Integration with AI and automation

• Devices require a constant power supply which is difficult

• Interaction and short-range communication

https://www.guru99.com/iot-testing-challenges-tools.html

Advantages of IoT
Key benefits of IoT technology are as follows:

• Technical Optimization: IoT technology helps a lot in improving
technologies and making them better. Example, with IoT, a manufacturer is
able to collect data from various car sensors. The manufacturer analyzes
them to improve its design and make them more efficient.

• Improved Data Collection: Traditional data collection has its limitations
and its design for passive use. IoT breaks it out of those spaces, and places
it exactly where humans really want to go to analyze our world. It allows an
accurate picture of everything. IoT facilitates immediate action on data.

• Reduced Waste: IoT offers real-time information leading to effective
decision making & management of resources. For example, if a
manufacturer finds an issue in multiple car engines, he can track the
manufacturing plan of those engines and solves this issue with the
manufacturing belt.

• Improved Customer Engagement: IoT allows you to improve customer
experience by detecting problems and improving the process.

Advantages of IoT

Disadvantages of IoT
• Security: IoT technology creates an ecosystem of connected devices.

However, during this process, the system may offer little
authentication control despite sufficient security measures.

• Privacy: The use of IoT, exposes a substantial amount of personal
data, in extreme detail, without the user's active participation. This
creates lots of privacy issues.

• Flexibility: There is a huge concern regarding the flexibility of an IoT
system. It is mainly regarding integrating with another system as there
are many diverse systems involved in the process.

• Complexity: The design of the IoT system is also quite complicated.
Moreover, it's deployment and maintenance also not very easy.

• Compliance: IoT has its own set of rules and regulations. However,
because of its complexity, the task of compliance is quite challenging.

IoT Architecture
• Basically, there are three IoT architecture layers:

• 1. The client side (IoT Device Layer)

• 2. Operators on the server side (IoT Getaway Layer)

• 3. A pathway for connecting clients and operators (IoT Platform Layer)

• In fact, addressing the needs of all these layers is crucial on all the
stages of IoT architecture. Being the basis of feasibility criterion, this
consistency makes the result designed really work. In addition, the
fundamental features of sustainable IoT architecture include
functionality, scalability, availability, and maintainability. Without
addressing these conditions, the result of IoT architecture is a failure.

IoT Architecture

• In the context of the Internet of Things, the architecture is a
framework that defines the physical components, the functional
organization and configuration of the network, operational
procedures and the data formats to be used.

• The IoT architecture technology mainly consists of four major
components:

• Sensors/Devices

• Gateways and Networks

• Cloud/Management Service Layer

• Application Layer

IoT Architecture
• Stages of IoT Solutions Architecture

• There are several layers of IoT built upon the capability and performance of IoT elements that provides the
optimal solution to the business enterprises and end-users. The IoT architecture is a fundamental way to
design the various elements of IoT, so that it can deliver services over the networks and serve the needs for
the future.

• Following are the primary stages (layers) of IoT that provides the solution for IoT architecture.

• Sensors/Actuators: Sensors or Actuators are the devices that are able to emit, accept and process data over
the network. These sensors or actuators may be connected either through wired or wireless. This contains
GPS, Electrochemical, Gyroscope, RFID, etc. Most of the sensors need connectivity through sensors
gateways. The connection of sensors or actuators can be through a Local Area Network (LAN) or Personal
Area Network.

• Gateways and Data Acquisition: As the large numbers of data are produced by this sensors and actuators
need the high-speed Gateways and Networks to transfer the data. This network can be of type Local Area
Network (LAN such as WiFi, Ethernet, etc.), Wide Area Network (WAN such as GSM, 5G, etc.).

• Edge IT: Edge in the IoT Architecture is the hardware and software gateways that analyze and pre-process
the data before transferring it to the cloud. If the data read from the sensors and gateways are not changed
from its previous reading value then it does not transfer over the cloud, this saves the data used.

• Data center/ Cloud: The Data Center or Cloud comes under the Management Services which process the
information through analytics, management of device and security controls. Beside this security controls and
device management the cloud transfer the data to the end users application such as Retail, Healthcare,
Emergency, Environment, and Energy, etc.

IoT Architecture

IoT Architecture
• Stage 1. Networked things (wireless sensors and actuators)

• The outstanding feature about sensors is their ability to convert the
information obtained in the outer world into data for analysis. In
other words, it’s important to start with the inclusion of sensors in
the 4 stages of an IoT architecture framework to get information in an
appearance that can be actually processed.

• For actuators, the process goes even further — these devices are able
to intervene the physical reality. For example, they can switch off the
light and adjust the temperature in a room.

• Because of this, sensing and actuating stage covers and adjusts
everything needed in the physical world to gain the necessary insights
for further analysis.

IoT Architecture

• Stage 2. Sensor data aggregation systems and analog-to-digital data
conversion

• Even though this stage of IoT architecture still means working in a
close proximity with sensors and actuators, Internet getaways and
data acquisition systems (DAS) appear here too. Specifically, the later
connect to the sensor network and aggregate output, while Internet
getaways work through Wi-Fi, wired LANs and perform further
processing.

• The vital importance of this stage is to process the enormous amount
of information collected on the previous stage and squeeze it to the
optimal size for further analysis. Besides, the necessary conversion in
terms of timing and structure happens here.

• In short, Stage 2 makes data both digitalized and aggregated.

IoT Architecture

• Stage 3. The appearance of edge IT systems

• During this moment among the stages of IoT architecture, the
prepared data is transferred to the IT world. In particular, edge IT
systems perform enhanced analytics and pre-processing here. For
example, it refers to machine learning and visualization technologies.
At the same time, some additional processing may happen here, prior
to the stage of entering the data center.

• Likewise, Stage 3 is closely linked to the previous phases in the
building of an architecture of IoT. Because of this, the location of edge
IT systems is close to the one where sensors and actuators are
situated, creating a wiring closet. At the same time, the residing in
remote offices is also possible.

IoT Architecture
• Stage 4. Analysis, management, and storage of data

• The main processes on the last stage of IoT architecture happen in
data center or cloud. Precisely, it enables in-depth processing, along
with a follow-up revision for feedback. Here, the skills of both IT and
OT (operational technology) professionals are needed. In other
words, the phase already includes the analytical skills of the highest
rank, both in digital and human worlds. Therefore, the data from
other sources may be included here to ensure an in-depth analysis.

• After meeting all the quality standards and requirements, the
information is brought back to the physical world — but in a
processed and precisely analyzed appearance already.

Basic fundamental architecture of IoT i.e., 4
Stage IoT architecture

So, from the above image

it is clear that there is 4

layers are present that can

be divided as follows:

➢Sensing Layer,

➢Network Layer,

➢Data processing Layer

and

➢Application Layer.

IoT Architecture

• These are explained as following below.

• Sensing Layer –
Sensors, actuators, devices are present in this Sensing layer. These Sensors
or Actuators accepts data(physical/environmental parameters), processes
data and emits data over network.

• Network Layer –
Internet/Network gateways, Data Acquisition System (DAS) are present in
this layer. DAS performs data aggregation and conversion function
(Collecting data and aggregating data then converting analog data of
sensors to digital data etc). Advanced gateways which mainly opens up
connection between Sensor networks and Internet also performs many
basic gateway functionalities like malware protection, and filtering also
some times decision making based on inputted data and data management
services, etc.

IoT Architecture

• Data processing Layer –
This is processing unit of IoT ecosystem. Here data is analyzed and
pre-processed before sending it to data center from where data is
accessed by software applications often termed as business
applications where data is monitored and managed and further
actions are also prepared. So here Edge IT or edge analytics comes
into picture.

• Application Layer –
This is last layer of 4 stages of IoT architecture. Data centers or cloud
is management stage of data where data is managed and is used by
end-user applications like agriculture, health care, aerospace,
farming, defense, etc.

Characteristics of IoT
• Massively scalable and efficient.

• IP-based addressing will no longer be suitable in the upcoming
future.

• An abundance of physical objects is present that does not use
IP, so IoT is made possible.

• Devices typically consume less power. When not in use, they
should be automatically programmed to sleep.

• A device that is connected to another device right now may not
be connected in another instant of time.

• Intermittent connectivity – IoT devices aren’t always
connected. In order to save bandwidth and battery
consumption, devices will be powered off periodically when not
in use. Otherwise, connections might turn unreliable and thus
prove to be inefficient.

Characteristics of IoT

Characteristics of IoT
• There are 7 crucial IoT characteristics:

• Connectivity. This doesn’t need too much further explanation. With everything going on in IoT
devices and hardware, with sensors and other electronics and connected hardware and control
systems there needs to be a connection between various levels.

• Things. Anything that can be tagged or connected as such as it’s designed to be connected. From
sensors and household appliances to tagged livestock. Devices can contain sensors or sensing
materials can be attached to devices and items.

• Data. Data is the glue of the Internet of Things, the first step towards action and intelligence.

• Communication. Devices get connected so they can communicate data and this data can be
analyzed. Communication can occur over short distances or over a long range to very long range.
Examples: Wi-Fi, LPWA network technologies such as LoRa or NB-IoT.

• Intelligence. The aspect of intelligence as in the sensing capabilities in IoT devices and the
intelligence gathered from big data analytics (also artificial intelligence).

• Action. The consequence of intelligence. This can be manual action, action based upon debates
regarding phenomena (for instance in smart factory decisions) and automation, often the most
important piece.

• Ecosystem. The place of the Internet of Things from a perspective of other technologies,
communities, goals and the picture in which the Internet of Things fits. The Internet of Everything
dimension, the platform dimension and the need for solid partnerships.

https://www.i-scoop.eu/internet-of-things-guide/lpwan/
https://www.i-scoop.eu/internet-of-things-guide/iot-network-lora-lorawan/
https://www.i-scoop.eu/internet-of-things-guide/lpwan/nb-iot-narrowband-iot/
https://www.i-scoop.eu/industry-4-0/smart-factory-scaling/

Physical design of IoT
• The physical design of an IoT system is referred to the Things/Devices and

protocols that used to build an IoT system. all these things/Devices are
called Node Devices and every device has a unique identity that performs
remote sensing, actuating, and monitoring work. and the protocols that
used to established communication between the Node devices and server
over the internet.

Things

• Basically Things refers to IoT Devices which have unique identities and can
perform remote sensing, actuating and monitoring capabilities. Things are
is main part of IoT Application.

• IoT Devices can be various type, Sensing Devices, Smart Watches, Smart
Electronics appliances, Wearable Sensors, Automobiles, and industrial
machines.

• These devices generate data in some forms or the other which when
processed by data analytics systems leads to useful information to guide
further actions locally or remotely.

https://www.programmingoneonone.com/2021/04/internet-of-things.html

Physical design of IoT

• Things/Devices are used to build a connection, process data, provide
interfaces, provide storage, and provide graphics interfaces in an IoT
system. all these generate data in a form that can be analyzed by an
analytical system and program to perform operations and used to improve
the system.

• for example temperature sensor that is used to analyze the temperature
generates the data from a location and then determined by algorithms.

Physical design of IoT
Generic Block Diagram of IoT Devices

Connectivity

Devices like USB host and ETHERNET are used for

connectivity between the devices and server.

Processor

A processor like a CPU and other units are used to

process the data. these data are further used to improve

the decision quality of an IoT system.

Audio/Video Interfaces

An interface like HDMI and RCA devices is used to

record audio and videos in a system.

Input/Output interface

To giving input and output signals to sensors, and

actuators we use things like UART, SPI, CAN, etc.

Storage Interfaces

Things like SD, MMC, SDIO are used to store the data

generated from an IoT device.

Other things like DDR, GPU are used to control the

activity of an IoT system.

Physical design of IoT
IoT Protocols

• These protocols are used to
establish communication
between a node device and
server over the internet. it helps
to send commands to an IoT
device and receive data from
an IoT device over the internet.
we use different types of
protocols that present on both
the server and client-side and
these protocols are managed by
network layers like application,
transport, network, and link layer.

https://www.programmingoneonone.com/2021/04/internet-of-things.html

Physical design of IoT
IoT Protocols (Application Layer)

• Application Layer protocol

• In this layer, protocols define how the data can be sent over the network
with the lower layer protocols using the application interface. (or)

• Application layer protocols define how the applications interface with the
lower layer protocols to send over their network.

• These protocols including
• HTTP

• CoAp

• WebSocket

• MQTT

• XMPP

• DDS

• AMQP protocols.

Physical design of IoT
IoT Protocols (Application Layer)

• HTTP : Hypertext Transfer Protocol (HTTP) is an application-layer protocol
for transmitting hypermedia documents, such as HTML. It was designed for
communication between web browsers and web servers, but it can also be
used for other purposes.

• It makes a request to a server and then waits till it receives a response and
in between the request server does not keep any data between two
requests.

• HTTP follows a classical client-server model, with a client opening a
connection to make a request, then waiting until it receives a response.

• HTTP is a stateless protocol, meaning that the server does not keep any
data (state) between two requests. Though often based on a TCP/IP layer, it
can be used on any reliable transport layer, that is, a protocol that doesn’t
lose messages silently like UDP does. RUDP — the reliable update of UDP
— is a suitable alternative.

Physical design of IoT
IoT Protocols (Application Layer)

• CoAP : CoAP-Constrained Application Protocol is a specialized Internet
Application Protocol for constrained devices, as defined in RFC 7252. It
enables devices to communicate over the Internet.

• It is defined as Contrained Application Protocol, and is a protocol intended
to be used in very simple hardware. The protocol is especially targeted for
constrained hardware such as 8-bits microcontrollers, low power sensors
and similar devices that can’t run on HTTP or TLS.

• It is a simplification of the HTTP protocol running on UDP, that helps save
bandwidth. It is designed for use between devices on the same constrained
network (e.g., low-power, lossy networks), between devices and general
nodes on the Internet, and between devices on different constrained
networks both joined by an internet.

• CoAP is also being used via other mechanisms, such as SMS on mobile
communication networks.

Physical design of IoT
IoT Protocols (Application Layer)

• WebSocket : The WebSocket Protocol enables two-way
communication between a client running untrusted code in a
controlled environment to a remote host that has opted-in to
communications from that code.

• The security model used for this is the origin-based security model
commonly used by web browsers. The protocol consists of an opening
handshake followed by basic message framing, layered over TCP.

• The goal of this technology is to provide a mechanism for browser-
based applications that need two-way communication with servers
that does not rely on opening multiple HTTP connections (e.g., using
XMLHttpRequest or <iframe>s and long polling).

Physical design of IoT
IoT Protocols (Application Layer)

• MQTT protocol runs on top of the TCP/IP networking stack. When
clients connect and publish/subscribe, MQTT has different message
types that help with the handshaking of that process.

• It is a machine-to-machine connectivity protocol that was designed as
a publish/subscribe messaging transport and it is used for remote
locations where a small code footprint is required.

• The MQTT header is two bytes and first byte is constant. In the first
byte, you specify the type of message being sent as well as the QoS
level, retain, and DUP (duplication) flags. The second byte is the
remaining length field.

Physical design of IoT
IoT Protocols (Application Layer)

• XMPP : Extensible Messaging and Presence Protocol (XMPP) is a
communication protocol for message-oriented middleware based on XML
(Extensible Markup Language).

• It enables the near-real-time exchange of structured yet extensible data
between any two or more network entities. Originally named Jabber, the
protocol was developed by the eponymous open-source community in
1999 for near real-time instant messaging (IM), presence information, and
contact list maintenance.

• Designed to be extensible, the protocol has been used also for publish-
subscribe systems, signalling for VoIP, video, file transfer, gaming, the
Internet of Things (IoT) applications such as the smart grid, and social
networking services.

Physical design of IoT
IoT Protocols (Application Layer)

• DDS : The Data Distribution Service (DDS) is a middleware protocol and
API standard for data-centric connectivity from the Object Management
Group® (OMG®). It integrates the components of a system together,
providing low-latency data connectivity, extreme reliability, and a scalable
architecture that business and mission-critical Internet of Things (IoT)
applications need.

• In a distributed system, middleware is the software layer that lies between
the operating system and applications. It enables the various components
of a system to more easily communicate and share data. It simplifies the
development of distributed systems by letting software developers focus
on the specific purpose of their applications rather than the mechanics of
passing information between applications and systems.

Physical design of IoT
IoT Protocols (Application Layer)

• AMQP : The AMQP – IoT protocols consist of a hard and fast of
components that route and save messages within a broker carrier, with a
set of policies for wiring the components together. The AMQP protocol
enables patron programs to talk to the dealer and engage with the AMQP
model. AMQP has the following three additives, which might link into
processing chains in the server to create the favored capability.
➢Exchange: Receives messages from publisher primarily based programs and routes

them to ‘message queues’.
➢Message Queue: Stores messages until they may thoroughly process via the eating

client software.

➢Binding: States the connection between the message queue and the change.

Physical design of IoT
IoT Protocols(Transport Layer)

• Transport Layer

• This layer provides functions such as error control, segmentation,
flow control and congestion control.

• So this layer protocols provide end-to-end message transfer capability
independent of the underlying network.

• TCP

• UDP

Physical design of IoT
IoT Protocols(Transport Layer)

• TCP : TCP (Transmission Control Protocol) is a standard that defines how to
establish and maintain a network conversation through which application
programs can exchange data.

• TCP works with the Internet Protocol (IP), which defines how computers
send packets of data to each other. Together, TCP and IP are the basic rules
defining the Internet. The Internet Engineering Task Force (IETF) defines
TCP in the Request for Comment (RFC) standards document number 793.

• UDP : User Datagram Protocol (UDP) is a Transport Layer protocol. UDP is a
part of Internet Protocol suite, referred as UDP/IP suite. Unlike TCP, it is
unreliable and connectionless protocol. So, there is no need to establish
connection prior to data transfer.

Physical design of IoT
IoT Protocols(Network Layer)

• Network Layer

• This layer is used to send datagrams from the source network to the
destination network. we use IPv4 and IPv6 protocols as a host
identification that transfers data in packets.

• IPv4

• IPv6

• 6LoWPAN

Physical design of IoT
IoT Protocols(Network Layer)

• IPv4 :

• An Internet Protocol address (IP address) is a numerical label
assigned to each device connected to a computer network that uses
the Internet Protocol for communication. An IP address serves two
main functions: host or network interface identification and location
addressing.

• Internet Protocol version 4 (IPv4) defines an IP address as a 32-bit
number. However, because of the growth of the Internet and the
depletion of available IPv4 addresses, a new version of IP (IPv6), using
128 bits for the IP address, was standardized in 1998. IPv6
deployment has been ongoing since the mid-2000s.

Physical design of IoT
IoT Protocols(Network Layer)

• IPv6 : Internet Protocol version 6 (IPv6) is the most recent version of
the Internet Protocol (IP), the communications protocol that provides
an identification and location system for computers on networks and
routes traffic across the Internet. IPv6 was developed by the Internet
Engineering Task Force (IETF) to deal with the long-anticipated
problem of IPv4 address exhaustion. IPv6 is intended to replace IPv4.
In December 1998, IPv6 became a Draft Standard for the IETF, who
subsequently ratified it as an Internet Standard on 14 July 2017. IPv6
uses a 128-bit address, theoretically allowing 2128, or
approximately 3.4×1038 addresses.

Physical design of IoT
IoT Protocols(Network Layer)

• 6LoWPAN : 6LoWPAN is an acronym of IPv6 over Low-Power Wireless
Personal Area Networks.6LoWPAN is the name of a concluded
working group in the Internet area of the IETF. 6LoWPAN is a
somewhat contorted acronym that combines the latest version of the
Internet Protocol (IPv6) and Low-power Wireless Personal Area
Networks (LoWPAN). 6LoWPAN, therefore, allows for the smallest
devices with limited processing ability to transmit information
wirelessly using an internet protocol. 6LoWPAN can communicate
with 802.15.4 devices as well as other types of devices on an IP
network link like WiFi.

Physical design of IoT
IoT Protocols(Link Layer)

• Link Layer

• Link layer protocols determine how data is physically sent over the
network’s physical layer or medium (Coxial cable or other or radio wave).
Link Layer determines how the packets are coded and signaled by the
hardware device over the medium to which the host is attached (eg. coxial
cable).

• Ethernet

• It is a set of technologies and protocols that are used primarily in LANs. it
defines the physical layer and the medium access control for wired
ethernet networks.

• WiFi

• It is a set of LAN protocols and specifies the set of media access control and
physical layer protocols for implementing wireless local area networks.

Physical design of IoT
IoT Protocols(Link Layer)

• Here we explain some Link Layer Protocols:

• 802.3 – Ethernet : Ethernet is a set of technologies and protocols that are
used primarily in LANs. It was first standardized in 1980s by IEEE 802.3
standard. IEEE 802.3 defines the physical layer and the medium access
control (MAC) sub-layer of the data link layer for wired Ethernet networks.
Ethernet is classified into two categories: classic Ethernet and switched
Ethernet.

• 802.11 – WiFi : IEEE 802.11 is part of the IEEE 802 set of LAN protocols, and
specifies the set of media access control (MAC) and physical layer (PHY)
protocols for implementing wireless local area network (WLAN) Wi-Fi
computer communication in various frequencies, including but not limited
to 2.4 GHz, 5 GHz, and 60 GHz frequency bands.

Physical design of IoT
IoT Protocols(Link Layer)

• 802.16 – Wi-Max : The standard for WiMAX technology is a standard for
Wireless Metropolitan Area Networks (WMANs) that has been developed
by working group number 16 of IEEE 802, specializing in point-to-
multipoint broadband wireless access. Initially 802.16a was developed and
launched, but now it has been further refined. 802.16d or 802.16-2004 was
released as a refined version of the 802.16a standard aimed at fixed
applications. Another version of the standard, 802.16e or 802.16-2005 was
also released and aimed at the roaming and mobile markets.

• 802.15.4 -LR-WPAN : A collection of standards for Low-rate wireless
personal area network. The IEEE’s 802.15.4 standard defines the MAC and
PHY layer used by, but not limited to, networking specifications such as
Zigbee®, 6LoWPAN, Thread, WiSUN and MiWi protocols. The standards
provide low-cost and low-speed communication for power constrained
devices.

• 2G/3G/4G- Mobile Communication : These are different types of
telecommunication generations. IoT devices are based on these standards
can communicate over the celluer networks.

Logical design of IoT

• Logical design of IoT system refers to an abstract representation of
the entities & processes without going into the low-level specifies of
the implementation.

• It uses Functional Blocks, Communication Models,
and Communication APIs to implement a system.

• For understanding Logical Design of IoT, we describes given below
terms.

• IoT Functional Blocks

• IoT Communication Models

• IoT Communication APIs

Logical design of IoT- Functional blocks of IoT
• An IoT system comprises of a number of functional blocks that

provide the system the capabilities for identification, sensing,
actuation, communication and management.

Logical design of IoT- Functional blocks of IoT
• functional blocks are:

• Device: An IoT system comprises of devices that provide sensing, actuation,
monitoring and control functions.

• Communication: Handles the communication for the IoT system.

• Services: services for device monitoring, device control service, data publishing
services and services for device discovery.

• Management: this blocks provides various functions to govern the IoT system.

• Security: this block secures the IoT system and by providing functions such as
authentication , authorization, message and content integrity, and data security.

• Application: This is an interface that the users can use to control and monitor
various aspects of the IoT system. Application also allow users to view the system
status and view or analyze the processed data.

These functional blocks consist of devices that provide monitoring control
functions, handle communication between host and server, manage the transfer of
data, secure the system using authentication and other functions, and interface to
control and monitor various terms.

Logical design of IoT- IoT Communication Models

• There are several different types of models available in an
IoT system that used to communicate between the system
and server like the

• Request-response model,

• publish-subscribe model,

• push-pull model and

• exclusive pair model, etc.

Logical design of IoT- IoT Communication Models
• Request-Response Model

• Request-response model is communication model in which the client
sends requests to the server and the server responds to the requests.
When the server receives a request, it decides how to respond,
fetches the data, retrieves resource representation, prepares the
response, and then sends the response to the client. Request-
response is a stateless communication model and each request-
response pair is independent of others.

• HTTP works as a request-response protocol between a client and
server. A web browser may be the client, and an application on a
computer that hosts a web site may be the server.

Logical design of IoT- IoT Communication Models

• Example: A client (browser) submits an HTTP request to the server;
then the server returns a response to the client. The response
contains status information about the request and may also contain
the requested content.

Logical design of IoT- IoT Communication Models

• Publish-Subscribe Model

• Publish-Subscribe is a communication model that involves publishers,
brokers and consumers. Publishers are the source of data. Publishers send
the data to the topics which are managed by the broker. Publishers are not
aware of the consumers.

• Consumers subscribe to the topics which are managed by the broker. When
the broker receive data for a topic from the publisher, it sends the data to
all the subscribed consumers.

Logical design of IoT- IoT Communication Models

• The Following figure shows the Publish-Subscribe Model

• Example

• On the website many times we subscribed to their newsletters using
our email address. these email addresses managed by some third-
party services and when a new article published on the website it
directly sends to the broker and then the broker send these new data
or post to all the subscribers.

Logical design of IoT- IoT Communication Models
• Push-Pull Model

• Push-Pull is a communication model in which
the data producers push the data to queues
and the consumers Pull the data from the
Queues.

• Producers do not need to be aware of the
consumers. Queues help in decoupling the
messaging between the Producers and
Consumers.

• Queues also act as a buffer which helps in
situations when there is a mismatch between
the rate at which the producers push data
and the rate rate at which the consumer pull
data.

• Example

• When we visit a website we saw a number of
posts that published in a queue and
according to our requirements, we click on a
post and start reading it.

Logical design of IoT- IoT Communication Models

• Exclusive Pair Model

• Exclusive Pair is a bidirectional, fully
duplex communication model that
uses a persistent connection between
the client and server. Connection is
setup it remains open until the client
sends a request to close the
connection. Client and server can
send messages to each other after
connection setup. Exclusive pair is
stateful communication model and
the server is aware of all the open
connections.

Logical design of IoT- IoT communication APIs

•Generally we used Two APIs For IoT Communication.
These IoT Communication APIs are:

•REST-based Communication APIs

•WebSocket-based Communication APIs

Logical design of IoT- IoT communication APIs

• REST-based Communication APIs

• Representational state transfer (REST) is a set of architectural
principles by which you can design Web services the Web APIs that
focus on systems’s resources and how resource states are addressed
and transferred.

• REST APIs that follow the request response communication model,
the rest architectural constraint apply to the components, connector
and data elements, within a distributed hypermedia system.

Logical design of IoT- IoT communication APIs

• The rest architectural constraint are as follows:

Logical design of IoT- IoT communication APIs
• Client-server – The principle behind the client-server constraint is

the separation of concerns. for example clients should not be
concerned with the storage of data which is concern of the serve.

• Similarly the server should not be concerned about the user interface,
which is concern of the client.

• Separation allows client and server to be independently developed
and updated.

• Stateless – Each request from client to server must contain all the
information necessary to understand the request, and cannot take
advantage of any stored context on the server.

• The session state is kept entirely on the client.

Logical design of IoT- IoT communication APIs

• Cache-able – Cache constraints requires that the data within a
response to a request be implicitly or explicitly leveled as cache-able
or non cache-able. If a response is cache-able, then a client cache is
given the right to reuse that repsonse data for later, equivalent
requests. caching can partially or completely eliminate some
instructions and improve efficiency and scalability.

• Layered system – layered system constraints, constrains the behavior
of components such that each component cannot see beyond the
immediate layer with they are interacting. For example, the client
cannot tell whether it is connected directly to the end server or two
an intermediary along the way. System scalability can be improved by
allowing intermediaries to respond to requests instead of the end
server, without the client having to do anything different.

Logical design of IoT- IoT communication APIs

• Uniform interface – uniform interface constraints requires that the
method of communication between client and server must be
uniform. Resources are identified in the requests (by URIs in web
based systems) and are themselves is separate from the
representations of the resources data returned to the client. When a
client holds a representation of resources it has all the information
required to update or delete the resource you (provided the client has
required permissions). Each message includes enough information to
describe how to process the message.

• Code on demand – Servers can provide executable code or scripts for
clients to execute in their context. this constraint is the only one that
is optional.

Logical design of IoT- IoT communication APIs

Uniform Resource

Identifier (URI)
GET PUT PATCH POST DELETE

Collection, such

as https://api.example

.com/resources/

List the URIs and

perhaps other details

of the collection’s
members.

Replace the entire

collection with another

collection.

Not generally used

Create a new entry in

the collection. The

new entry’s URI is
assigned automatically

and is usually returned

by the operation.

Delete the entire

collection.

Element, such

as https://api.example

.com/resources/item5

Retrieve a

representation of the

addressed member of

the collection,

expressed in an

appropriate Internet

media type.

Replace the addressed

member of the

collection, or if it does

not exist, create it.

Update the addressed

member of the

collection.

Not generally used.

Treat the addressed

member as a collection

in its own right and

create a new entry

within it.

Delete the addressed

member of the

collection.

A RESTful web service is a ” Web API ” implemented using HTTP and REST principles.

REST is most popular IoT Communication APIs.

The Following table represents the HTTP Methods used in REST

Logical design of IoT- IoT communication APIs
• WebSocket based communication API

• Websocket APIs allow bi-directional, full duplex communication between clients
and servers.

• Websocket APIs follow the exclusive pair communication model. Unlike request-
response model such as REST, the WebSocket APIs allow full duplex
communication and do not require new coonection to be setup for each
message to be sent. Websocket communication begins with a connection setup
request sent by the client to the server.

• The request (called websocket handshake) is sent over HTTP and the server
interprets it is an upgrade request. If the server supports websocket protocol, the
server responds to the websocket handshake response. After the connection
setup client and server can send data/mesages to each other in full duplex mode.

• Websocket API reduce the network traffic and letency as there is no overhead for
connection setup and termination requests for each message.

• Websocket suitable for IoT applications that have low latency or high throughput
requirements. So Web socket is most suitable IoT Communication APIs for IoT
System.

Logical design of IoT- IoT communication APIs

• The below given figure shows the WebSocket based communication
API

Machine to machine

• What is the M2M Communication?

• This is the M2M or Machine to Machine communication.

• The machine to machine concept represents any technology that
allows two devices to exchange information with each other, for
example, communicate and send data. The communication that
occurs between the machines or devices is autonomous, there is no
need for human intervention for this data exchange to take place.

• M2M connectivity is related to the Internet of Things (IoT). Both are
part of the same concept and complement each other. Thanks to IoT,
a system of machines or interrelated devices can be connected
wirelessly, and exchange and analyze data automatically in the cloud.
In short, IoT is enabled by integrating many M2M devices and using
cloud web platforms to process all that data.

Machine-to-Machine (M2M)

• Machine-to-Machine (M2M) refers to networking of machines (or
devices) for the purpose of remote monitoring and control and data
exchange.

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

Machine-to-Machine (M2M)

• An M2M area network comprises machines (or M2M nodes) which have
embedded hardware modules for sensing, actuation and communication.

• Various communication protocols can be used for M2M local area
networks, such as ZigBee, Bluetooth, ModBus, M-Bus, Wireless M-Bus,
Power Line Communication (PLC), 6LoWPAN, IEEE 802.15.4, etc.

• The communication network provides connectivity to remote M2M area
networks.

• The communication network can use either wired or wireless networks (IP-
based).

• While the M2M area networks use either proprietary or non-IP based
communication protocols, the communication network uses IP-based
networks.

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

M2M Gateway

• Since non–IP-based protocols are used within M2M area networks, the
M2M nodes within one network cannot communicate with nodes in an
external network.

• To enable communication between remote M2M area networks, M2M
gateways are used.

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

Machine to machine
• M2M, or machine-to-machine, is the foundation of the sophisticated device connectivity

that we enjoy today. An M2M connection is a point-to-point connection between two
network devices that allows them to transmit information via public networking
technologies such as Ethernet and cellular networks.

• Example: Sensor telemetry is one of the original uses of M2M communication. For
decades, businesses have used M2M to remotely monitor factors like temperature,
energy consumption, moisture, pressure and more through sensors.

• Example: ATMs offer another great example of M2M technology. The ATM’s internal
computer is constantly communicating with a host processor that routes transactions to
the appropriate banks and accounts. The banks then send back approval codes through
the host processor, allowing transactions to be completed.

• What makes this an example of M2M technology is that the entire transaction happens
remotely and without any need for a human operator on the bank’s side. Machines
communicate smoothly, efficiently and automatically, allowing transactions to be
authorized in seconds. M2M technology has a decades-long track record of improving
the world’s ability to communicate and execute transactions effectively across long
distances and in real time.

https://www.iotforall.com/data-in-iot-m2m/

Machine to machine
• What types of connectivity are used in M2M?

• There are different types of connectivity between machines, and it is
possible that you already know almost everyone. But, what are the most
used? First, we have the RFID , or radiofrequency identification.

• The limitation of this type of connectivity is that it has a maximum range of
10 meters. On the other hand, there are Bluetooth and WiFi that also have
a limited range, from 10 to 20 meters in the case of Bluetooth and 50
meters in the case of WiFi.

• These types of connectivity are short range if we compare them with the
following. Connectivity using low frequency has a range of up to 1,000 km
and the GSM network (using SIM cards) or the satellite is worldwide. As
you can see, there are many different options that allow us adapting to
each problem.

https://www.intel.com/content/www/us/en/products/wireless.html

Machine to machine
• Some interesting applications of M2M

• The applications and areas in which connectivity between machines can be
applied and used are very wide.

• For example, the connected vending machines allow the distributor to
know their replacement status and to notify in cases which some product
runs out.

• It is also very useful in the health area. Telemedicine is a concept already
implemented in some places and has meant great improvements in this
area. In hospitals, processes are automated to improve efficiency and
safety, for example, using devices capable of reacting faster than humans. If
a patient has a drop in vital signs and is connected to an M2M device, the
machine can automatically administer extra oxygen before the hospital
staff reaches it.

Machine to machine
• Likewise, it is also used in the industry , allowing machines to be

connected to each other and sending data each other. With this data, they
can optimize processes automatically, notify when a machine has a
breakdown or even self-repair.

• In general we can establish the following industrial applications:
• Automated maintenance

• Procedure for requesting spare parts

• End of process notice

• Data collection for processing by other equipment

• Intelligent stock control

• Implementation of just-in-time systems

• More and more companies are starting to use this type of connectivity that
improves the efficiency level and allows us to address great production
challenges.

Communication in IoT vs M2M

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

Difference between IoT and M2M

• Communication Protocols

• M2M and IoT can differ in how the communication between the machines or
devices happens.

• M2M uses either proprietary or non–IP-based communication protocols for
communication within the M2M area networks.

• Machines in M2M vs Things in IoT

• The "Things" in IoT refers to physical objects that have unique identifiers and
can sense and communicate with their external environment (and user
applications) or their internal physical states.

• M2M systems, in contrast to IoT, typically have homogeneous machine types
within an M2M area network.

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

Difference between IoT and M2M
• Internet of Things :

IOT is known as the Internet of Things where things are said to be the
communicating devices that can interact with each other using a
communication media. Usually every day some new devices are being
integrated which uses IoT devices for its function.

• These devices use various sensors and actuators for sending and
receiving data over the internet. It is an ecosystem where the devices
share data through a communication media known as the internet.

• For example, an air conditioner's sensor may collect the data on
outside temperatures and change its temperature to increase or
decrease according to the outside environment's temperature.
Likewise, the refrigerators may change their temperature accordingly,
too.

Difference between IoT and M2M
• Machine to Machine :

This is commonly known as Machine to machine communication. It is
a concept where two or more than two machines communicate with
each other without human interaction using a wired or wireless
mechanism.

• M2M is an technology that helps the devices to connect between
devices without using internet.

• M2M communications offer several applications such as security,
tracking and tracing, manufacturing and facility management.

• M2M technology may be present in offices, shopping malls, houses,
and many other places. A common example of a machine to machine
is controlling electrical devices like fans and bulbs using Bluetooth
from the smartphone. Here, the smartphone and electrical devices
are the two interacting devices with each other.

Main Differences between the IoT and M2M

1. IoT is a subset of M2M technology. In IoT, the communication between
two machines without human instruction, making it a part of the M2M
communication system.

2. The point-to-point communication of M2M is the main difference
between M2M and IoT technology. Meanwhile, an IoT system usually
locates its devices within a global cloud network that facilitates larger-
scale automation and more advanced applications.

3. Another key difference between IoT and M2M is scalability. IoT is
designed to be highly scalable because devices may also be included in
the network and integrated into existing networks with minimal issues. In
contrast, maintaining and setting up M2M networks could also be more
labor-intensive, as new point-to-point connections must be built for each
system.

Difference between IoT and M2M

• Hardware vs Software Emphasis
• While the emphasis of M2M is more on hardware with embedded modules, the

emphasis of IoT is more on software.

• Data Collection & Analysis
• M2M data is collected in point solutions and often in on-premises storage

infrastructure.
• In contrast to M2M, the data in IoT is collected in the cloud (can be public, private or

hybrid cloud).

• Applications
• M2M data is collected in point solutions and can be accessed by on-premises

applications such as diagnosis applications, service management applications and on-
premises enterprise applications.

• IoT data is collected in the cloud and can be accessed by cloud applications such as
analytics applications, enterprise applications, remote diagnosis and management
applications, etc.

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

Difference between IoT and M2M
Sl.No Basis of IoT M2M

1 Abbreviation Internet of Things Machine to Machine

2
Intelligence

Devices have objects that are

responsible for decision making

Some degree of intelligence is

observed in this

3 Connection type

used

The connection is via Network and

using various communication types.
The connection is a point to point

4
Communication

protocol used

Internet protocols are used such

as HTTP, FTP, and Telnet.

Traditional protocols and

communication technology

techniques are used

5

Data Sharing

Data is shared between other

applications that are used to improve

the end-user experience.

Data is shared with only

https://www.geeksforgeeks.org/difference-between-http-and-https/
https://www.geeksforgeeks.org/file-transfer-protocol-ftp-in-application-layer/
https://practice.geeksforgeeks.org/problems/explain-telnet

Difference between IoT and M2M

Sl.No Basis of IoT M2M

6
Internet

Internet connection is required for

communication

Devices are not dependent on the

Internet.

7
Scope

A large number of devices yet

scope is large.
Limited Scope for devices.

8 Business Type

used

Business 2 Business(B2B) and

Business 2 Consumer(B2C)
Business 2 Business (B2B)

9 Open API

support
Supports Open API integrations.

There is no support for Open

Api’s

10
Examples

Smart wearables, Big Data and

Cloud, etc.

Sensors, Data and Information,

etc.

Software Defined Network (SDN)
• What is software-defined networking (SDN)?

• Software-defined networking (SDN) is an approach to networking that
uses software-based controllers or application programming interfaces
(APIs) to communicate with underlying hardware infrastructure and direct
traffic on a network.

• This model differs from that of traditional networks, which use dedicated
hardware devices (i.e., routers and switches) to control network traffic.
SDN can create and control a virtual network – or control a traditional
hardware – via software.

• While network virtualization allows organizations to segment different
virtual networks within a single physical network, or to connect devices on
different physical networks to create a single virtual network, software-
defined networking enables a new way of controlling the routing of data
packets through a centralized server.

https://www.vmware.com/topics/glossary/content/virtual-networking
https://www.vmware.com/topics/glossary/content/network-virtualization?SRC=WWW_US_GP_sdn_SiteLink

Software Defined Network (SDN)

Key element of the SDN

• Centralized Network Controller: With decoupled control and
dataplanes and centralized network controller, the network
administrators can rapidly configure the network.

• Programmable Open APIs: SDN architecture supports programmable
open API for interface between the SDN application and control
layers(Northbound interface).

• Standard Communication Interface(OpenFlow): SDN architecture uses
a standard communication interface between the control and
infrastructure layers(Southbound interface).

Software Defined Network (SDN)
• Software-Defined Networking (SDN) is a networking architecture that

separates the control plane from the data plane and centralizes the
network controller.

• Software-based SDN controllers maintain a unified view of the
network and make configuration, management and provisioning
simpler.

• The underlying infrastructure in SDN uses simple packet forwarding
hardware as opposed to specialized hardware in conventional
networks.

Software Defined Network (SDN)

Software Defined Network (SDN)
• Open flow

• Which is defined by Open Networking Foundation(ONF) is broadly
accepted by SDN protocol for the southbound interface.

• Eith Open Flow, the forwarding plane of the network devices can be
directly accessed and manipulated.

• Open flow uses the concept of flows to identify network traffic based on
predefined match rules.

• Flows can be programmed statically or dynamically by SDN control
software.

• Openflow protocol is implemented on both sides of the interface between
the controller and the network devices.

• The controller manages the switch via the openflow switch protocol.

• The controller can add, update and delete flow entries in the flow table.

• Each flow entries contains the match fields, counters and set of instructions
to apply matching packets.

Software Defined Network (SDN)

Software Defined Network (SDN)
• Why software-defined networking is important?

• SDN represents a substantial step forward from traditional networking, in
that it enables the following:

• Increased control with greater speed and flexibility: Instead of manually
programming multiple vendor-specific hardware devices, developers can
control the flow of traffic over a network simply by programming an open
standard software-based controller. Networking administrators also have
more flexibility in choosing networking equipment, since they can choose a
single protocol to communicate with any number of hardware devices
through a central controller.

• Customizable network infrastructure: With a software-defined network,
administrators can configure network services and allocate virtual
resources to change the network infrastructure in real time through one
centralized location. This allows network administrators to optimize the
flow of data through the network and prioritize applications that require
more availability.

Software Defined Network (SDN)
• Robust security: A software-defined network delivers visibility into the entire

network, providing a more holistic view of security threats. With the proliferation
of smart devices that connect to the internet, SDN offers clear advantages over
traditional networking. Operators can create separate zones for devices that
require different levels of security, or immediately quarantine compromised
devices so that they cannot infect the rest of the network.

• The key difference between SDN and traditional networking is infrastructure: SDN
is software-based, while traditional networking is hardware-based. Because the
control plane is software-based, SDN is much more flexible than traditional
networking. It allows administrators to control the network, change configuration
settings, provision resources, and increase network capacity — all from a
centralized user interface, without the need for more hardware.

• There are also security differences between SDN and traditional networking.
Thanks to greater visibility and the ability to define secure pathways, SDN offers
better security in many ways. However, because software-defined networks use a
centralized controller, securing the controller is crucial to maintaining a secure
network.

Software Defined Network (SDN)
• How does software-defined networking (SDN) work?

• Here are the SDN basics: In SDN (like anything virtualized), the software is
decoupled from the hardware. SDN moves the control plane that
determines where to send traffic to software, and leaves the data plane
that actually forwards the traffic in the hardware. This allows network
administrators who use software-defined networking to program and
control the entire network via a single pane of glass instead of on a device
by device basis.

• There are three parts to a typical SDN architecture, which may be located
in different physical locations:
• Applications, which communicate resource requests or information about the

network as a whole

• Controllers, which use the information from applications to decide how to route a
data packet

• Networking devices, which receive information from the controller about where to
move the data

Software Defined Network (SDN)

• Physical or virtual networking devices actually move the data through
the network. In some cases, virtual switches, which may be
embedded in either the software or the hardware, take over the
responsibilities of physical switches and consolidate their functions
into a single, intelligent switch. The switch checks the integrity of both
the data packets and their virtual machine destinations and moves
the packets along.

https://www.vmware.com/topics/glossary/content/virtual-networking

Software Defined Network (SDN)
• Benefits of software-defined networking (SDN)

• Many of today’s services and applications, especially when they involve the cloud,
could not function without SDN. SDN allows data to move easily between
distributed locations, which is critical for cloud applications.

• Additionally, SDN supports moving workloads around a network quickly. For
instance, dividing a virtual network into sections, using a technique called
network functions virtualization (NFV), allows telecommunications providers to
move customer services to less expensive servers or even to the customer’s own
servers. Service providers can use a virtual network infrastructure to shift
workloads from private to public cloud infrastructures as necessary, and to make
new customer services available instantly. SDN also makes it easier for any
network to flex and scale as network administrators add or remove virtual
machines, whether those machines are on-premises or in the cloud.

• Finally, because of the speed and flexibility offered by SDN, it is able to support
emerging trends and technologies such as edge computing and the Internet of
Things, which require transferring data quickly and easily between remote sites.

https://www.vmware.com/topics/glossary/content/internet-things-iot
https://www.vmware.com/topics/glossary/content/internet-things-iot

Software Defined Network (SDN)
• How is SDN different from traditional networking?

• The key difference between SDN and traditional networking is
infrastructure: SDN is software-based, while traditional networking is
hardware-based. Because the control plane is software-based, SDN is much
more flexible than traditional networking. It allows administrators to
control the network, change configuration settings, provision resources,
and increase network capacity—all from a centralized user interface,
without adding more hardware.

• There are also security differences between SDN and traditional
networking. Thanks to greater visibility and the ability to define secure
pathways, SDN offers better security in many ways. However, because
software-defined networks use a centralized controller, securing the
controller is crucial to maintaining a secure network, and this single point
of failure represents a potential vulnerability of SDN.

Software Defined Network (SDN)
• What are the different models of SDN?

• While the premise of centralized software controlling the flow of data in switches
and routers applies to all software-defined networking, there are different
models of SDN.

• Open SDN: Network administrators use a protocol like OpenFlow to control the
behavior of virtual and physical switches at the data plane level.

• SDN by APIs: Instead of using an open protocol, application programming
interfaces control how data moves through the network on each device.

• SDN Overlay Model: Another type of software-defined networking runs a virtual
network on top of an existing hardware infrastructure, creating dynamic tunnels
to different on-premise and remote data centers. The virtual network allocates
bandwidth over a variety of channels and assigns devices to each channel, leaving
the physical network untouched.

• Hybrid SDN: This model combines software-defined networking with traditional
networking protocols in one environment to support different functions on a
network. Standard networking protocols continue to direct some traffic, while
SDN takes on responsibility for other traffic, allowing network administrators to
introduce SDN in stages to a legacy environment.

Software Defined Networking for IoT

Software Defined Networking for IoT
• Internet of things (IoT) poses challenges that are different from traditional

Internet in different aspects — heterogeneous communication
technologies, application-specific QoS requirements, massive influx of data,
and unpredictable network conditions. On the other hand, software-
defined networking (SDN) is a promising approach to control the network
in a unified manner using rule-based management. The abstractions
provided by SDN enable holistic control of the network using high-level
policies, without being concerned about low-level configuration issues.
Hence, it is advantageous to address the heterogeneity and application-
specific requirements of IoT.

• We study the application and impact of softwarization on IoT networks
from different perspectives: access networks, edge networks, and wide
area networks. We also develop and analyze models to characterize the
performance of softwarized networks.

Advantages and Disadvantages of SDN

• Advantages of SDN:

• Network is programmable hence can easily be modified via the controller
rather than individual switches.

• Switch hardware becomes cheaper since each switch only needs a data
plane.

• Hardware is abstracted, hence applications can be written on top of
controller independent of switch vendor.

• Provides better security since the controller can monitor traffic and deploy
security policies. For example, if the controller detects suspicious activity in
network traffic, it can reroute or drop the packets.

• Disadvantages of SDN:
The central dependency of the network means single point of failure, i.e. if
the controller gets corrupted, the entire network will be affected.

Features of software-defined networking

• There are 4 unique, defining features of software-defined networking:

• Agile. As business and application needs change, administrators can
adjust network configuration without

• Centrally Managed. SDN consolidates network intelligence, which
provides a holistic view of the network configuration and activity

• Programable. The ability to directly program network features and
configure network resources quickly and easily through automated
SDN services.

• Open Connectivity. SDN is based on and implemented via open
standards. As a result, SDN streamlines network design and provides
consistent networking in a vendor -neutral architecture.

https://opennetworking.org/sdn-definition/?nab=0&utm_referrer=https://www.google.com/

Difference between SDN and Traditional Network
S.No. SDN TRADITIONAL NETWORK

01.
Software Defined Network is virtual

networking approach.

Traditional network is the old conventional

networking approach.

02.
Software Defined Network is centralized

control.
Traditional Network is distributed control.

03. This network is programmable. This network is non programmable.

04. Software Defined Network is open interface. Traditional network is closed interface.

05.
In Software Defined Network data plane and

control plane are decoupled by software.

In traditional network data plane and control plane

are mounted on same plane

06.
It supports automatic configuration so it

takes less time.

It supports static/manual configuration so it takes

more time.

07.
It can prioritize and block specific network

packets.

It leads all packets in the same way no

prioritization support.

Difference between SDN and Traditional Network
S.No. SDN TRADITIONAL NETWORK

08. It is easy to program as per need.
It is difficult to program again and to replace

existing program as per use.

09. Cost of Software Defined Network is low. Cost of Traditional Network is high.

10.
Structural complexity is low in Software

Defined Network.

Structural complexity is high in Traditional

Network.

11.
Extensibility is high in Software Defined

Network.
Extensibility is low in Traditional Network.

12.
In SDN it is easy to troubleshooting and

reporting as it is centralized controlled.

In Traditional network it is difficult to troubleshoot

and report as it is distributed controlled.

13.
Its maintenance cost is lower than traditional

network.

Traditional network maintenance cost is higher

than SDN.

References
• https://www.edureka.co/blog/iot-tutorial/

• https://www.guru99.com/iot-tutorial.html

• https://www.javatpoint.com/iot-internet-of-things

• https://www.programmingoneonone.com/2021/04/physical-design-of-iot.html

• https://www.geeksforgeeks.org/difference-between-iot-and-m2m/

• https://www.javatpoint.com/iot-vs-m2m

• https://www.tutorialspoint.com/internet_of_things/internet_of_things_common_uses.htm

• https://iotbyhvm.ooo/physical-and-logical-design-of-iot/

• https://www.atriainnovation.com/en/m2m-communication-what-is-it/

• https://www.javatpoint.com/iot-architecture-models

• https://medium.datadriveninvestor.com/4-stages-of-iot-architecture-explained-in-simple-words-
b2ea8b4f777f

• https://www.vmware.com/topics/glossary/content/software-defined-networking

• https://cse.iitkgp.ac.in/~smisra/theme_pages/sdn/index.html#

• https://www.slideshare.net/SagarRai14/sdn-software-defined-network-and-nfvnetwork-function-
virtualization-for-internet-of-things

• https://cse.iitkgp.ac.in/~smisra/theme_pages/sdn/index.html#

• https://www.geeksforgeeks.org/difference-between-software-defined-network-and-traditional-network/

https://www.edureka.co/blog/iot-tutorial/
https://www.guru99.com/iot-tutorial.html
https://www.javatpoint.com/iot-internet-of-things
https://www.geeksforgeeks.org/difference-between-iot-and-m2m/
https://www.javatpoint.com/iot-vs-m2m
https://www.tutorialspoint.com/internet_of_things/internet_of_things_common_uses.htm
https://iotbyhvm.ooo/physical-and-logical-design-of-iot/
https://www.atriainnovation.com/en/m2m-communication-what-is-it/
https://medium.datadriveninvestor.com/4-stages-of-iot-architecture-explained-in-simple-words-b2ea8b4f777f
https://medium.datadriveninvestor.com/4-stages-of-iot-architecture-explained-in-simple-words-b2ea8b4f777f
https://www.vmware.com/topics/glossary/content/software-defined-networking
https://cse.iitkgp.ac.in/~smisra/theme_pages/sdn/index.html
https://www.slideshare.net/SagarRai14/sdn-software-defined-network-and-nfvnetwork-function-virtualization-for-internet-of-things
https://www.slideshare.net/SagarRai14/sdn-software-defined-network-and-nfvnetwork-function-virtualization-for-internet-of-things
https://cse.iitkgp.ac.in/~smisra/theme_pages/sdn/index.html

CSPC702-EMBEDDED SYSTMES
AND INTERNET OF THINGS (IOT)

UNIT - IV Network and communication aspects

Syllabus

• UNIT - IV Network and communication aspects

• Wireless medium access issues, MAC protocol survey, Survey routing
protocols, Sensor deployment & Node discovery, Data aggregation &
dissemination- Applications of IoT: Home automation, Industry
applications, Surveillance applications, Other IoT applications.

Wireless medium access issues
Introduction

❑The medium access sublayer is the bottom part of data link layer. The medium access sublayer is also
known as MAC (Medium Access Control) sublayer.

❑When a common medium is shared by many stations, MAC layer plays a very important role. Without
this control several stations transmits simultaneously could produce garbled messages.

❑The media access control mechanism standardized by IEEE are implemented in the MAC sublayer of the
Data link layer. It provides service to the LLC (Logical Link Control) sublayer and receives service from the
physical layer below it.

❑The basic functions of MAC sublayer is the media access control, error detection and station addressing.
The physical transmission medium of a LAN is shared by the stations connected on the LAN.

❑Media access control procedures are implemented to ensure that every station gets a fair chance to
transmit and collision do not take place.

❑There are several methods of media access control in LANs. Each method is applicable to specific LAN
topology. In addition to the basic access procedures, the MAC layer also handles the frame delimiting,
address recognition and error checking functions

❑When number of user stations share a single transmission medium. This is called as multiple access
communication. The transmission medium is broadcast in nature, so all other attached stations to the
medium can receive the transmission from any given station.

Wireless medium access issues

• When it comes to communication using a wireless medium there is
always a concern about the interference due to other present
wireless communication technologies. Wireless means
communication and message transfer without the use of physical
medium i.e., wires.

• Let us understand how communication is done between them.
Different Mobile stations(MS) are attached to a transmitter/receiver
which communicates via a shared channel by other nodes. In this
type of communication, it makes it difficult for the MAC design rather
than the wireline networks.

Wireless medium access issues
• The very important issues which are observed are:

• Half Duplex operation,

• Time-varying channel, and

• Burst channel errors.
These are explained as following below.

• Half Duplex operation:

• Half-duplex transmission means when the sender and receiver both are capable of
sharing data but one at a time.

• In wireless transmission, it is difficult to receive data when the transmitter is sending the
data because during transmission a large amount or a large fraction of signal energy is
leaked while broadcasting.

• The magnitude of the transferred signal and received signal differs a lot. Due to which
collision detection is even not possible by the sender as the intensity of the transferred
signal is large than the received one. Hence this causes the problem of collision and the
prime focus should be to minimize the collision.

Wireless medium access issues

• Time-varying channel :
Time-varying channels include the three mechanisms for radio signal
propagations they are Reflection, Diffraction, and Scattering.
• Reflection –

This occurs when a propagating wave carrying information intrudes on an object that
has very large dimensions than the wavelength of the wave.

• Diffraction –
This occurs when the radio path between the transmitter and the receiver is collided
by the surface with sharp edges. This is a phenomenon which causes the diffraction
of the wave from the targeted position.

• Scattering –
This occurs when the medium through from the wave is traveling consists of some
objects which have dimensions smaller than the wavelength of the wave.

• While transmitting the signal by the node these are time shifted and this is called
multipath propagation. While when this node signals intensity is dropped below a
threshold value, then this is termed as fade. As a result Handshaking strategy is
widely used so as a healthy communication can be set up.

MAC protocol survey
Introduction

• A typical node in the WSN consists of a sensor, embedded processor,
moderate amount of memory an transmitter/receiver circuitry. The
sensor node’s radio in the WSNs consumes a significant amount of
energy. Because of hardware limitations further energy efficiency can
be achieved through the design of energy efficient communication
protocols.

• Medium access control (MAC) is an important technique. One of the
main functions of the MAC protocol is to avoid collisions from
interfering nodes.The classical IEEE MAC protocol for wireless local
area network wastes a lot of energy because of idle
listening.Designing power efficient MAC protocol is one of the ways to
prolong the life time of the network.

MAC protocol survey

MAC Protocol Design Challenges

• The medium access control protocols for the wireless sensor network
have to achieve two objectives.

• The first objective is the creation of the sensor network infrastructure.

• The second objective is to share the communication medium fairly and
efficient.

• Attributes of a Good MAC Protocol

• Energy Efficiency

• Latency

• Throughput

• Fairnessy.

MAC protocol survey

• Major Sources of Energy Wastes

• Collision

• Overhearing

• Packet Overhead

• Idle listening

• MAC Performance Matrices

• Energy Consumption per bit

• Average Delivery Ratio

• Average Packet Latency

• Network Throughput

MAC protocol survey
• Responsibilities and Design issues of MAC Protocol

• Ad hoc wireless networks are included portable nodes that trade packets
by sharing a typical communicate radio channel. Because of the constraints
of this channel, the data transmission to be shared among the nodes is
constrained.

• In this manner, the point in these networks is to have the option to use the
transmission capacity effectively, and ensure decency to all nodes. As we
probably are aware, wireless networks contrast gigantically from wired
networks moreover, ad hoc wireless networks have significantly
progressively explicit attributes, for example, node versatility, power
requirements.

• Thus, new protocols are required for controlling access to the physical
medium. The special properties of the ad hoc network make the structure
of a medium access control (MAC) protocol all the more testing.

https://practice.geeksforgeeks.org/problems/what-is-media-access-controlmac

MAC protocol survey

• Responsibilities of MAC Protocol :

• Network overhead should be low.

• Efficiently allocate the bandwidth.

• Distributed MAC operation.

• Power control mechanism should be present.

• Maximum utilization of channel.

• Hidden and Exposed problem should be removed.

• Nodes should be sync with time.

MAC protocol survey
• Design issues of MAC Protocol :

• Bandwidth Efficiency
The shortage of data transfer capacity assets in these networks requires its proficient use. To
evaluate this, we could state that bandwidth capacity is the proportion of the bandwidth used for
data transmission to the complete accessible bandwidth capacity.

• Quality of Service Support
Quality of service support is difficult due to the mobility of the nodes. Once a node moves out of
reach, the reservation in it is lost. In these networks, QoS is extremely important because if it is
being used in military environments, the service support needed time to time.

• Synchronization
Some instruments must be found so as to give synchronization among the nodes. Synchronization
is significant for directing the bandwidth reservation.

• Hidden Terminal Problem
When there are two nodes, both are outside of each other’s range and try to communicate with
same node within their range at the same time, then there must be packet collision.

• Exposed Terminal Problem
Uncovered nodes might be denied channel access pointlessly, which implies under usage of the
bandwidth resources.

Survey routing protocols
• Definition of Routing Protocol

• Routing bears significant importance since nodes in a IoT network act
as hosts and routers delivering data to the gateways. Many routing
protocols have been proposed for sensor networks and are applicable
within the IoTs. The routing of data from source to destination
impacts the power consumption of forwarding nodes.

Survey routing protocols

Survey routing protocols-RPL Protocol
• RPL is a distance-vector and a source routing protocol that is designed to

operate on top of several link layer mechanisms including IEEE 802.15.4
PHY and MAC layers.

• These link layers could be constrained, potentially lossy, or typically utilized
in conjunction with highly constrained host or router devices, such as but
not limited to, low power wireless or PLC (Power Line Communication)
technologies.

• RPL mainly targets collection-based networks, where nodes periodically
send measurements to a collection point.

• A key feature of RPL is that it represents a specific routing solution for low
power and lossy networks.

• The protocol was designed to be highly adaptive to network conditions and
to provide alternate routes, whenever default routes are inaccessible.

• RPL provides a mechanism to disseminate information over the
dynamically formed network topology. This mechanism uses Trickle to
optimize the dissemination of control messages

Survey routing protocols- LOADng
• Lightweight on-demand ad hoc distance-vector routing protocol-next generation

LOADng :

• The Lightweight on-demand ad hoc distance-vector routing protocol-next
generation or LOADng is a lightweight variation of AODV for LLNs.

• It is designed based on the idea that LLNs are idle most of the time. Hence
instead of adopting a proactive approach would generate unnecessary overhead,
LOADng follows a reactive approach in which routes are established towards
destinations only when there is some data to send.

• LOADng is a reactive routing protocol, and found suitable for a more general
traffic pattern. It does not have any node that performs special functions like the
root and is hence not subjected to the subsequent problems that arise due to
such a consideration.

• Also, due to its compressed and flexible data format, there is no possibility of
fragmentation. It does not impose any strict source routing rules, hence it can
accommodate applications which require a fixed MTU.

• However, LOADng might have a higher delay in the route discovery phase and
might have higher control traffic overhead if the traffic flows are predominantly
P2P.

Survey routing protocols-CTP

• Collection Tree Protocol (CTP) :

• CTP is a distance vector routing algorithm that was developed as a
solution to routing in WSNs.

• It stands as a predecessor to RPL and was considered the de-facto
routing standard for Tiny OS.

• It builds a tree-based topology with the root at the sink of the
network, CTP uses adaptive beaconing mechanism to broadcast
routing control messages.

• Moreover, CTP relied on a specific link-layer technology for topology
formation, CTP was earlier known for its efficient energy consumption
and high Packet Reception Ratio (PRR).

Survey routing protocols
• CORPL Routing Protocol: CORPL will retain the Directed Acyclic Graph (DAG)

based approach of RPL and at the same time introduce novel modifications to
allow its application in Cognitive Radio environments.

• CORPL uses an opportunistic forwarding approach that consists of two key steps:
• selection of a forwarder set i.e., each node in the network selects multiple next hop

neighbors, and a coordination scheme to ensure that only the best receiver of each packet
forwards it (unique forwarder selection).

• In CORPL, each node maintains a forwarder set such that the forwarding node
(next hop) is opportunistically selected. The DAG construction process in CORPL
follows a similar procedure as in RPL.

• After detecting a vacant channel, the gateway node transmits a Destination
Information Object (DIO) message. is constructed in such a way that the
forwarding nodes are within the transmission range of each other. During the DIO
transmission, each node also reports some additional information using the
Option field of the DIO message.

• Each node updates the neighborhood information through the DIO message
transmission. Based upon the neighborhood information, each node dynamically
prioritizes its neighbors in order to construct the forwarder list.

Survey routing protocols

• CARP Routing Protocol:

• Channel-aware Routing Protocol (CARP) is a multi-hop delivery of data to the sink
for WSN. CARP obviates to the drawbacks such as link quality is explicitly taken
into account for selecting the next-hop node on a route to the sink.

• CARP quickly varying conditions of the underwater channel, the fact that two
nodes can exchange short control packets correctly, may not be sufficient to
guarantee that longer data packets are also going to be safely delivered”.
• Generally, CARP is a location is constructed in such a way that the forwarding

nodes are within the transmission range of each other. During the DIO
transmission, each node also reports some additional information using the
Option field of the DIO message.

• Each node updates the neighborhood information through the DIO message
transmission. Based upon the neighborhood information, each node dynamically
prioritizes its neighbors in order to construct the forwarder list

Survey routing protocols
• free and greedy hop-by-hop routing protocol, whose performance is proved

better than FBR, and of its enhanced version Flood. Link quality is explicitly
considered when selecting a relay node for packet forwarding. The performance
and applicability of CARP have been evaluated in the real ocean environment.
However, there may have unnecessary control packets to be forwarded in CARP
when selecting relay nodes for packet forwarding, and these control packets may
be avoided in certain situations.

• Other characteristics that make CARP relay selection particularly suitable for
implementing multi-hop routing in UWSNs include the following:

(i) The use of simple topology information (hop count) for routing around
connectivity holes and shadow zones, thus avoiding the well-known pitfalls
of geographic routing;

(ii) considering residual energy and buffer space, and

(iii) taking advantage of power control, if available, for selecting
transmission powers so that shorter control packets experience a similar
Packet Error Rate (PER) of longer data packets.

Survey routing protocols
• E-CARP Routing Protocol:

• E-CARP, which is an enhancement upon CARP, to develop a location-free and greedy hop-
by-hop routing protocol for forwarding packets from sensor nodes to the sink node in an
energy efficient manner.

• Generally, CARP does not consider the reusability of sensory data collected previously by
domain applications in the following time points, which induces sensory data packets
forwarding which may not be beneficial to certain applications.

• Therefore, E-CARP allows the caching of sensory data at the sink node, for avoiding these
data packets forwarding in the network. CARP requires to reply a PONG control packet
whenever receiving a PING control packet, when selecting the most appropriate relay
node for packet forwarding. This PING-PONG strategy may not be mandatory when the
network topology is relatively steady.

• This observation drives us to improve the relay node selection strategy in CARP, and the
relay node adopted previously is given a higher priority to be reused at this moment.
Simulation results validate that our E-CARP can decrease the communication cost and
increase the network capability to a large extent, especially when the ratio of packet size
between control packets and sensory data packets is relatively large.

• E-CARP does not differentiate the priority of different attributes. In fact, sensory data of
attributes of more importance should be routed to SN with a higher priority. Besides,
sensory data of a certain sensor node may vary following a spatial and/or temporal
discipline.

Survey routing protocols

Routing Protocol Main Results Simulation Used

RPL ➢ RPL showed better PRR and Energy consumption

➢ RPL showed lesser churn

➢ RPL showed high PRR

➢ RPL had higher control-traffic overhead

➢ RPL able to cater to variety of traffic patterns,

➢ RPL is link-layer independent

Contiki/ Cooja

CTP ➢ In smaller networks, CTP showed better PRR. In larger networks,

➢ CTP showed high PRR

➢ CTP is only collection-based

Contiki/ Cooja

LOADng ➢ LOADng caters to more general traffic pattern

➢ LOADng has flexible and compressible

➢ packet format

➢ No single point of failure in LOADng

➢ Longer route discovery phase in LOADng

➢ More control traffic in LOADng if traffic is predominantly P2P

Contiki/ Cooja

Survey routing protocols

Routing Protocol Main Results Simulation Used

LOAD ➢ In LOAD, control traffic / data traffic

➢ LOAD routes longer than RPL routes

➢ Higher delay in LOAD due to buffering during route-discovery

➢ More collisions in LOAD due to flooding

NS2

CORPL ➢ CORPL make use of Directed Acyclic Graph (DAG) like RPL

➢ CORPL uses an opportunistic forwarding approach

Contiki/ Cooja

CARP ➢ CARP is a multi-hop delivery of data to the sink for WSN.

➢ CARP takes care of link quality while selecting the next-hop node on a

route to the sink

Real Time Test-

bed

E-CARP ➢ E-CARP is an enhancement upon CARP,

➢ E-CARP is a location-free and greedy hop-by-hop routing protocol for

forwarding packets from sensor nodes to the sink node in an energy

efficient manner

➢ E-CARP does not differentiate the priority of different attributes

Test-bed

Sensor deployment & Node discovery
• What is sensor deployment?

Sensor deployment is one of the major concerns in multisensor
networks. ... It avoids the unstable coverage caused by the large
amount of computation, slow convergence speed, and easily falling into
local optimum, which provides a new idea for multisens or
deployment.

What is sensor deployment in IoT?

Wireless sensor networks (WSNs) are important components of smart
cities. Deploying IoT sensors in WSNs is a challenging aspect of network
design. Sensor deployment is performed to achieve objectives like
increasing coverage, strengthening connectivity, improving
robustness, or increasing the lifetime of a given WSN.

Sensor deployment & Node discovery
• What are the types of sensors in IoT?

IoT sensors have become critical to improving operational efficiency,
reducing costs and enhancing worker safety.

• Temperature Sensors

• Humidity Sensors.

• Pressure Sensors.

• Proximity Sensors.

• Level Sensors.

• Accelerometers.

• Gyroscope.

• Gas Sensors.

Sensor deployment & Node discovery

• How does sensors work in IoT?

• An IoT system consists of sensors/devices which “talk” to the cloud
through some kind of connectivity. Once the data gets to the cloud,
software processes it and then might decide to perform an action,
such as sending an alert or automatically adjusting the
sensors/devices without the need for the user.

• How many sensors are there in IoT?

• 12 Sensor Types for the Internet of Things. Here you have a list of IoT
sensors sorted from most to least popular (according to Google
Trends data), including temperature, proximity, pressure, and more.

Sensor deployment & Node discovery
• What is node discovery in IoT?

• Since the nodes can be stationary or mobile the network topology
frequently changes, therefore node or neighbor discovery is a
continuous process. ... The process of collaboration involves
the devices to discover each other and learn network topology.

Node discovery
• Challenges in Node Discovery in loT

• In order to efficiently do Neighbor discovery for opportunistic networking
in loT the following challenges must be dealt with:

• Recognising Presence of nodes: This is an important challenge for the
devices. The nodes need to recognise effectively the presence of other nodes
within the communication range. The discovery of the visiting node should
be done within a finite time window. Also, the nodes should be able to save
resources by understanding that no node is present within the range of
communication.

• Features of Mobility pattern: Another challenge for the nodes is to
understand the features of mobility pattern exhibited by the nodes. The
Mobility models exploit the temporal and spatial pattern characteristics (for
example, Levy nature of human walks).

• Acquisition of knowledge: The knowledge acquisition of the node mobility
pattern is important to predict the future arrival of nodes. This helps a node
to save power by scheduling resources only when a contact is expected.

Node discovery
Neighbor discovery in IoT has the following requirements:

• Minimum technologies that are required to work in mesh-under and route-
over configurations.

• To reduce the number of messages exchanged use of multicasting and
flooding of multicast messages has to be avoided.

• Efficiency of the link between host and default router has to be optimized.

• To reduce the node active period, provide an option for sleeping of inactive
nodes.

• 6LoWPAN header compression [RFC6282] requires propagation of context
information to hosts.

• Disseminate context information and prefix information from the border to
all routers in a LoWPAN.

• A multihop Duplicate Address Detection mechanism suitable for route-over
LoWPANs is required.

Node discovery
• Advantages of Neighbor discovery for opportunistic networking in IoT scenarios

• Extended Lifetime: Extended lifetime is one of the most important advantages of
performing neighbor node discovery. This is achieved by improving power
management of both the static and dynamic nodes by efficiently scheduling
resources only when the contacts are highly probable to occur.

• Communication time: By exploiting knowledge about node arrival time, resources
can be tailored to application requirements in useful communication time after the
discovery is done.

• Planning of Communication: It is possible to plan communication by learning the
pattern of when the nodes and their contact time. Neighbor node discovery for loT
devices should be capable of the following:

➢Learning

➢Prediction

➢Low Latency

➢Energy Efficiency

Node Discovery
Sl.No Name of the System Technique used Pros Cons

1 ZebraNet-History based protocol History based protocol Data collection with energy

efficiency.

Low performance with

dynamic network changes.

2 RBTP: Low power mobile discovery

protocol through recursive binary

time partitioning.

Time synchronized protocol. Decision taken based on a

nodes own battery level.

Nodes does not consider

arrival pattern of

neighbours.

3 Wakeup scheduling in wireless sensor

networks.

Even and odd shifting, ladder

approach.

Forward propagation delay of

messages is minimized.

Nodes will have to wait till

the neighbour wakes up.

4 Context aware resource discovery

framework

Arrival time based approach, Q

learning used.

Learns higher and lower duty

cycles effectively.

Learning is available on

static nodes, not available

on mobile elements.

5 Searchlight: won’t you be my
neigjbour.

Asynchronous deterministic

approach.

Usage of probe nodes to

discover with in shorter

period.

Mobility agnostic method.

6 Context aware power management

Discovery.

Colocation based approach. Schedule of neighbours is

accounted, making

communication better.

More time wasted on data

gather.

7 A fully distributed opportunistic

approach

Limited flooding and trickle

inspired algorithm

High discovery rates. Time spent on node

advertisement.

Data Aggregation & Dissemination
• What is data aggregation in IoT?

• Data Aggregation technique is used to increase the lifetime of
network by collecting information in an energy efficient manner.

• Data aggregation is any process in which information is gathered and
expressed in a summary form for purposes such as statistical
analysis. A common aggregation purpose is to get more information
about particular groups based on specific variables such as age,
profession, or income.

Data Aggregation & Dissemination

• What is the need of data aggregation in IoT?

• The use of different IoT data aggregation methods eliminates redundant data.
This reduces network traffic by significantly minimizing the number of sent data
packages. IoT sensor nodes can also eliminate redundancies in the data received
from neighboring nodes before transferring the final data packages.

• What are the main types of data aggregation being used in the IoT?

• The data aggregation mechanisms are categorized into three main groups,
including tree-based, cluster-based and centralized.

Data Aggregation & Dissemination

• Challenges to the implementation of wireless sensor networks in IoT
scenarios

• To improve our use of this complex technology, we need a closer look
at some of the typical WSN challenges. These include:

• Data volumes: This calls for re-conceptualizing of the very way things
will be connected with one another in favor of ways that reduce the
generation of massive volumes of raw IoT data as well as facing the
challenge of processing and storing the data from connected IoT
devices;

https://link.springer.com/article/10.1007/s11276-019-02142-z
https://arxiv.org/abs/1907.11367
https://arxiv.org/abs/1907.11367

Data Aggregation & Dissemination
• Data heterogeneity: Facing millions of different connected and

interconnected IoT devices, one is confronted with the need to organize
the incoming data and reduce its complexity;

• Highly dynamic IoT landscapes: Facing constantly changing conditions such
as night, day, working hours, disconnecting and reconnecting IoT devices,
as well as highly heterogeneous device landscapes of ever-growing
numbers of IoT devices connected to a network, there arises the need for
managing IoT ecosystems in a systematic way.

• In view of these challenges to the use of WSN in IoT applications, different
IoT data aggregation methods can overcome both energy-efficiency and
data transmission hurdles. The most common definition of data
aggregation is the process of fusing the data from multiple sensors to
minimize redundant transmission. In this way, only the fused information is
provided to the base station. Typically, data aggregation fuses data from
multiple sensors at intermediate nodes and transmits the aggregated data
to the base station.

https://surface.syr.edu/cgi/viewcontent.cgi?article=1021&context=eecs
https://surface.syr.edu/cgi/viewcontent.cgi?article=1021&context=eecs

Data Aggregation & Dissemination

• Why data aggregation?

• Data aggregation is the process of gathering and summarizing data
from multiple sources. Aggregated data is normally found in a data
warehouse. There, it can give answers to analytical questions and
greatly reduce the time required to query large data sets.

• The main rationale behind data aggregation is that it minimizes
energy depletion and the required network bandwidth.

• The use of different IoT data aggregation methods eliminates
redundant data. This reduces network traffic by significantly
minimizing the number of sent data packages.

• IoT sensor nodes can also eliminate redundancies in the data received
from neighboring nodes before transferring the final data packages.

Data Aggregation & Dissemination

• Another aspect to consider is the tradeoff between bandwidth and
S10 minutes but over very long distances.

• Since sensor nodes are powered by batteries, saving energy and
extending battery life is essential to the IoT data collection effort.
Data aggregation is considered an energy-aware data collection
technique and is preferred in scenarios where extending battery life is
crucial. It is even known to increase the lifespan of WSNs.

• Energy-aware data aggregation methods include clustered
aggregation, tree-based aggregation, in-network aggregation, as well
as centralized data aggregation that specifically considers the energy
consumption of sensor nodes.

https://dl.acm.org/doi/10.1016/j.jnca.2017.08.006
https://www.springerprofessional.de/en/energy-aware-data-aggregation-techniques-in-wireless-sensor-netw/15259302

Data aggregation methods in IoT sensor
network settings

• a need to identify suitable data aggregation techniques to collect and
analyze incoming data. Typically, at this level, we differentiate
between flat IoT data aggregation methods and a hierarchical
approach to data aggregation.

• In flat wireless sensor networks, all sensors play an equal role—there
is no hierarchical arrangement. Every sensor node serves the same
purpose and all IoT sensor nodes are peers. One disadvantage of flat
wireless sensor networks is that data aggregation takes place only in
the sink node area. As a result, network delay can be high. Also, if the
sink node fails, this negatively impacts the entire network.

https://www.mendeley.com/catalogue/eba81252-50a8-3d03-8e71-1b41903d200a/

Data aggregation methods in IoT sensor
network settings

• With the hierarchical approach to wireless sensor networks, there is
a hierarchy among the individual nodes based on their capabilities.
Roughly, these are divided into base stations, cluster heads, and
sensor nodes. The sensor nodes within a given cluster communicate
with each other and then communicate with the cluster head. More
computing power and increased network transmission capabilities
mean less battery life. So one of the main goals of this routing
method is to achieve better energy efficiency for the sensors within a
cluster.

Data aggregation methods in IoT sensor
network settings

• Cluster-based aggregation

• This is a hierarchical method best suited for large-scale energy-constrained
sensor environments. In such scenarios, it is not efficient for the sensors to
transmit the IoT data directly to the sink node (base station). Rather,
sensors transmit data to a local aggregator, also known as a cluster head.
The cluster head aggregates data from all the sensors in its cluster and
transmits it to the sink node. The cluster heads can communicate with the
sink node directly via long-range transmissions.

• They can also do multi-hopping through other cluster heads. The typical
protocols here include clustered diffusion with dynamic data aggregation
(CLUDDA), Low Energy Adaptive Clustering Hierarchy (LEACH), and Hybrid
Energy-Efficient Distributed Clustering Approach (HEED)

https://surface.syr.edu/cgi/viewcontent.cgi?article=1021&context=eecs

Data aggregation methods in IoT sensor
network settings

• Chain-based aggregation or string-based aggregation

• In some scenarios, if the cluster head is located too far from the sensors, communication
between the sensors and the cluster head might consume excessive amounts of energy.
On such occasions, it is more efficient for sensors to transmit data only to their closest
neighbors in the network. Chain-based data aggregation is a hierarchical method
whereby each sensor transmits only to its closest neighbor. Nodes are mostly organized
into a linear data aggregation chain.

• The node that is located farthest from the base station initiates chain formation. At each
step, a node’s closest neighbor is selected as its successor in the chain. So a node
receives data from one of its neighbors and merges the received data with its own data.
It then transmits the fused data further down the chain to its next neighbor. A lead node,
similar to the cluster head in cluster-based aggregation, transmits the aggregated data to
the base station.

• An example of a chain-based data aggregation protocol is the so-called power-efficient
data gathering protocol for sensor information systems (PEGASIS).

Data aggregation methods in IoT sensor
network settings

• Tree-based aggregation

• In this scenario, data is aggregated through the creation of a data
aggregation tree. Sensor nodes are organized in such a way that data
aggregation takes place at intermediate nodes along the “tree”. The so-
called “root node” only receives an already structured representation of
the data. This aggregation technique is suited for applications that
necessitate in-network data aggregation. One of the main challenges of
tree-based aggregation is the creation of an energy-efficient data
aggregation tree that optimizes the network lifespan and minimizes the
number of transmissions.

• On average, tree-based methods are known to have high overhead, high
energy uniformity, as well as greater strength, flexibility, and scalability as
compared to cluster-based methods.

Data aggregation methods in IoT sensor
network settings

• Grid-based aggregation

• This method is based on dividing the region of a sensor network into
several grids. A set of sensors act as data aggregators in pre-defined
regions of the sensor network. So we have a data aggregator (also known
as an integrator) that is fixed in each grid. And the array of sensors acts as
an aggregator/integrator within this particular region of the sensor
network. The sensors in that particular grid transmit the data directly to
the data aggregator that aggregates the data from all IoT sensors within
the grid.

• In grid-based aggregation, the individual IoT sensors within a grid do not
communicate with each other. Grid-based data aggregation is known to
adapt to dynamic changes in the network.

Data aggregation methods in IoT sensor
network settings

• Structureless aggregation

• Structureless data aggregation does not involve any kind of
architecture. Communication takes place from any node to any node
within the network. In some cases, as for example in event-based
applications that vary by event region, structureless aggregation is the
preferred approach.

https://pdfs.semanticscholar.org/b716/167409aa49ed73bcae515a4d3fd31fa183a2.pdf
https://pdfs.semanticscholar.org/b716/167409aa49ed73bcae515a4d3fd31fa183a2.pdf

Data Aggregation & Dissemination

• What is Data Dissemination?

• Data Dissemination protocols are required to distribute the data and code
between various sensor nodes and it provide periodic updates to sensor
programs.

• Data dissemination is the distribution or transmitting of statistical, or other,
data to end users. ... Proprietary data dissemination requires a specific piece of
software in order for end users to view the data. The data will not open in
common open formats.

• What are the purpose of data dissemination?

• Advances in information and communication technologies have made the global
distribution of information and knowledge effortless and have made data
available to multiple users the instant they are produced.

• What are the principles of data dissemination?

• Data should be disseminated in formats that are accessible and
accompanied by documentation that is clear and
complete. Dissemination should be timely, and information should be
made readily available on an equal basis to all users.

Data dissemination for Internet of Things
applications solution taxonomy

Classification of data dissemination protocols in Internet of Things
environment based on structure of the network

Countermeasures for secured data dissemination
in Internet of Things applications

There are a variety of countermeasures depending upon

the type of attacks, such as malware attack, wormhole

attack, and Sybil attack. The taxonomy of various

countermeasures is shown in Figure

• Cryptography-based solution: It provides solutions that

are key-based to securely communicate and exchange the

data among different entities for any IoT applications. It

includes symmetric searchable encryption, asymmetric

searchable encryption, anonymous broadcast encryption,

and homomorphic signature. Modern and classical

cryptographic algorithms such as advanced encryption

(AES), triple data encryption standard (DES), Rivest-Shamir-

Adleman algorithm, and DES provides security with a

minimum count of required resources. Hash functions are

also used to create a summary of the message (hM =

hash(M)) that can not be easily guessed by an untrusted

party.

Countermeasures for secured data dissemination
in Internet of Things applications

• BC-based solution: The existing cryptographic techniques such as
Homophobic Encryption Schemes, Secure Service Discovery, key
Management Mechanism, and one-Way Trapdoor Permutation can
also be used to secure data distribution between cloud and end user.
But, it has some issues such as key validation, trust among entities
involved in IoT. These issues can be resolved by using one of the
emerging technology known as BC technology. It has already gained
popularity among the research community because of its
characteristics such as immutability, nonrepudiation, security,
provenance, trust, and traceability.

Countermeasures for secured data dissemination
in Internet of Things applications

➢Trust-based solution: In the traditional dissemination schemes, the confidential
information is passed through the unsecured cloud or infrastructure. Hence, there is a
requirement of the third party to verify or authenticate the integrity of the information.
So secure service discovery or BC can be a viable solution where the involvement of a
trusted third party is expected.

➢Misbehaviour-detection-based solution: Misbehavior of different entities such as
sensors, base stations, administrator authority in the IoT environment can be considered
as a malicious or unauthorized activity. These activities can not be detected in normal
scenarios due to the absence of previous history, feedback, and set of specific
procedures. In such cases, the BC technology can be a viable solution where all
nodes/higher percentage of nodes agreed; then only the transaction is validated. It
provides consensus in the network, and once a consensus is achieved, a block is mined
and stored as an immutable ledger in the chain with all nodes having the same copy of
the ledger.

➢Software-defined networking-based solution: This platform is specially designed to
provide secure and more flexible network solutions. A centralized software-defined
network controller plays a vital role in managing the network resources in an easier
way.85,86 Hence, this technology became more popular in the last decade.

Countermeasures for secured data dissemination
in Internet of Things applications

• Machine learning-based solution: The countermeasures mentioned above
can identify only those attacks which are in its database. If an attack is
encountered during data distribution from cloud to end user other than a
dictionary attack, then the methods mentioned above are not able to
detect it. Various machine learning algorithms (such as classification,
clustering, and Bayesian network) can be used in such scenarios to predict
the attacks based on specific patterns. This is the new technological trend
in detecting the cyberattacks and used to calculate the probability of the
occurrence of attacks. The patterns are stored in a central node, and other
nodes perform decision analytics on the stored data to find and match
patterns and detect the signature of the attack. Hence, this technique can
be suitable to detect failures during data dissemination in any IoT-based
applications.

• Tactile-Internet based solution: In the traditional dissemination schemes,
network latency is one of the major concern which affects on the
performance of the network. Tactile internet is the new revolution in IoT. It
combines ultra-low latency with extremely high availability, security, and
reliability.

References

• https://www.geeksforgeeks.org/wireless-media-access-issues-in-internet-
of-things/

• https://www.geeksforgeeks.org/responsibilities-and-design-issues-of-mac-
protocol/

• https://smartify.in/knowledgebase/iot-based-home-automation-system/

• https://www.simform.com/blog/home-automation-using-internet-of-
things/

• https://premioinc.com/blogs/blog/five-useful-video-analytics-applications-
for-iot-surveillance

• https://nexusintegra.io/7-industrial-iot-applications/

• record-evolution.de/en/iot-data-aggregation-methods-in-wireless-sensor-
landscapes-on-making-data-valuable/

https://www.geeksforgeeks.org/wireless-media-access-issues-in-internet-of-things/
https://www.geeksforgeeks.org/wireless-media-access-issues-in-internet-of-things/
https://www.geeksforgeeks.org/responsibilities-and-design-issues-of-mac-protocol/
https://www.geeksforgeeks.org/responsibilities-and-design-issues-of-mac-protocol/
https://smartify.in/knowledgebase/iot-based-home-automation-system/
https://premioinc.com/blogs/blog/five-useful-video-analytics-applications-for-iot-surveillance
https://premioinc.com/blogs/blog/five-useful-video-analytics-applications-for-iot-surveillance
https://nexusintegra.io/7-industrial-iot-applications/

Home Automation
UNIT - IV Network and communication aspects

What Is Home Automation?
• Home automation is the automatic control of electronic devices in your

home. These devices are connected to the Internet, which allows them to
be controlled remotely.

• With home automation, devices can trigger one another so you don’t have
to control them manually via an app or voice assistant. For example, you
can put your lights on schedules so that they turn off when you normally
go to sleep, or you can have your thermostat turn the A/C up about an
hour before you return to work so you don’t have to return to a stuffy
house.

• Home automation makes life more convenient and can even save you
money on heating, cooling and electricity bills.

• Home automation can also lead to greater safety with Internet of Things
devices like security cameras and systems. But hold up; what’s the Internet
of Things?

Internet of Things vs. Home Automation

• The Internet of Things, commonly known as IoT, refers to any device
that’s connected to the Internet that isn’t normally; for example, a
smart light bulb that you can turn on and off via an app.

• All home automation devices are IoT devices, which can be
automated to trigger one another.

• So while IoT refers to the devices themselves, home automation is
what you can do with the IoT devices to make your life just a tad bit
easier.

How Does Home Automation Work?
• Home automation works via a network of devices that are connected

to the Internet through different communication protocols, i.e Wi-Fi,
Bluetooth, ZigBee, and others.

• Through electronic interfaces, the devices can be managed remotely
through controllers, either a voice assistant like Alexa or Google
Assistant or an app.

• Many of these IoT devices have sensors that monitor changes in
motion, temperature and light so the user can gain information about
the device’s surroundings.

• To make physical changes to the device, the user triggers actuators,
the physical mechanisms like smart light switches, motorized valves
or motors that allows devices to be controlled remotely.

https://www.security.org/smart-home/smart-light-switch/

How Home Automation Works?

• Home automation works
on three levels:

1. Monitoring: Monitoring
means that users can check
in on their devices remotely
through an app. For
example, someone could
view their live feed from a
smart security camera.

Nest Hello and Google Home Hub

How Home Automation Works?

• 2. Control: Control means
that the user can control
these devices remotely,
like panning a security
camera to see more of a
living space.

Amazon Echo Show and Box

•3. Automation: Finally, automation

means setting up devices to trigger

one another, like having a smart siren

go off whenever an armed security

camera detects motion.

Amazon Alexa and Amazon Cloud Cam

Home Automation System Components

• While some home automation systems require hubs, some mobile
applications connect directly to a router, which connects directly to
an IoT device. Of course, it’s preferable when there’s no hub, as that’s
just an added cost on top of the cost of the IoT device itself.

Home Automation System Components
• Remote Control

• The hallmark of home automation is remote control, which is done through
either a mobile application or through a voice assistant.

• Mobile Application: The mobile application allows users to control their devices
in real-time, whether it’s shutting off the outdoor lights or opening the smart
garage door for a neighbor. The app is also where users set schedules, create
scenes, groups of IoT devices, and customize device settings, like having your
living room lights set to the perfect shade of blue. Most of the IoT devices we’ve
reviewed have apps for Android and iOS devices, making them compatible with
the majority of mobile devices and tablets.

• Voice Assistants: If home automation is the sundae, think of voice assistants as
the cherry on top. With voice assistants, you can use your voice to control
devices, whether that’s disarming a security system as you walk in the front door,
showing your video doorbell’s footage on your Echo Show device, or setting a
timer on a smart speaker while your hands are full of cooking utensils. Most IoT
devices work with one of three voice assistants: Alexa, Google Assistant, and Siri.

https://www.security.org/smart-home/smart-garage-door/
https://www.security.org/smart-home/smart-garage-door/

Home Automation System Components

Recipes on the Google Nest Hub

Answered Correctly
Understood Query

Answered Correctly

Alexa 79.80% 99.90%

Google Assistant 92.90% 100%

Siri 83.10% 99.80%

Loup Ventures Annual Digital Assistant IQ Test Results2

Home Automation System Components

• Alexa: Alexa is Amazon’s voice
assistant that’s built into Echo
Show and Echo Dot devices
(for more information, check
out our Echo Show
review and our Echo Dot with
Clock review). Alexa is the
voice assistant we see
integrated into the highest
number of smart home
devices from companies like
SimpliSafe, Ring Alarm and
Vivint.

Amazon Alexa

https://www.security.org/smart-home/alexa/review/echo-show/
https://www.security.org/smart-home/alexa/review/echo-show/
https://www.security.org/smart-home/alexa/review/echo-dot-clock/
https://www.security.org/smart-home/alexa/review/echo-dot-clock/

Home Automation System Components

• Google Assistant: Google Assistant,
is, as you can imagine, Google’s voice
assistant. Although Google Assistant
has fewer “skills” or “actions” than
Alexa, it has been proven to be the
most accurate voice assistant in
terms of understanding and
answering queries correctly. To get
Google Assistant, you’ll need a smart
speaker or a smart display; read
our Nest Mini review or Nest Hub
review to get started.

Google Nest Mini

https://www.security.org/smart-home/google/review/nest-mini/
https://www.security.org/smart-home/google/review/home-hub/
https://www.security.org/smart-home/google/review/home-hub/

Home Automation System Components

• Siri: Siri is Apple’s voice assistant that’s integrated into the iPhone.
While Siri holds 35 percent of the global market share for voice
assistants, compared to nine percent and four percent with Google
Assistant and Alexa,3 respectively, there aren’t too many IoT devices
that work with Siri. Rather, the voice assistant is used mainly on
iPhones and iPads in contrast to home automation devices, where
Alexa and Google Assistant reign supreme.

Cloud Computing with Home Automation

• Rather than basing home automation systems off a dedicated IP
address or high-end computer, many systems are based on a cloud,
which is both more affordable and easier to use.

• For example, the Nest cameras don’t have slots for micro-SD cards,
which would have allowed footage to be stored locally. Rather, all
recorded footage is automatically uploaded to a cloud server, only
accessible through a Nest Aware subscription. In general, cloud
computing is incredibly popular on the Internet, so IoT devices are no
exception.

Cloud Computing with Home Automation
• Control Protocols

• The way that IoT devices connect to the Internet and each other is their control protocol;
if IoT devices are people, think of the protocol as their common languages. Like on Earth,
there are a few different languages, or protocols, that devices can speak, including:

• WiFi: WiFi is by far the most common control protocol; it means that your IoT device will
use the regular Internet provided by your Internet Service Provider. While this doesn’t
require an additional hub, note that it can slow your web surfing speeds down, especially
if you have a ton of different IoT devices set up at once.

• Z-Wave: Don’t want to mess with your home’s WiFi? Z-Wave is a wireless technology
that won’t interfere with your WiFi; rather, it operates on low power at 908.42 Mhz in
the U.S and Canada.5

• ZigBee: Similar to Z-Wave, ZigBee is a mesh network and universal language that lets IoT
devices communicate.
Thread: Thread is another low-power, wireless mesh networking protocol based on an IP
address open standard; it lets IoT devices connect to each other and the cloud.

• Bluetooth: Finally, Bluetooth is another mesh technology that lets people control and
monitor IoT devices and automate systems.

• For most people, WiFi-connected devices will be sufficient, but for more advanced smart
homes, you might want to switch to a mesh network like Z-Wave or ZigBee.

Advantages and Disadvantages of Home

Automation

Advantages Disadvantages

Energy Efficient Cost

Hands-free convenience Internet Reliance

Enhanced Security Setup and Configuration

Save Time with Automated Tasks More Technical Security Threats

Customization
Different Protocols (Z-Wave, Zigbee

etc.)

Pros and Cons of Home Automation
Sl.No Pros Cons

1 Remote access: Being able to

control devices remotely means

things like unlocking the door for a

plant sitter without having to leave

a key under the mat.

Costs: IoT devices are certainly more expensive than their non-WiFi-

connected counterparts. For example, the average smart bulb

costs around $32, while the average regular light bulb is about $5. Of

course, you have to factor in the additional features like remote

control, dimming, 16 million different colors and voice integrations, to

name a few, but overall, home automation isn’t cheap, depending on

where you shop.

2 Comfort: You know when you’re

all comfy in bed but realize you’ve

left the bathroom light on? With

smart light bulbs, you can turn

them off from the comfort of your

bed without having to leave those

high thread count sheets.

Security issues: It’s scary but true: anything that has to do with the

Internet, whether it’s browsing Etsy for a new bedspread or checking in

on a motion notification from a smart security camera, can be hacked,

and that includes IoT devices. Unfortunately, we’ve seen a fair share of

hackings and security breaches from large tech companies that

manufacture IoT devices; Ring’s cameras, for example, were famously

hacked, allowing the live feeds to be compromised.7 Of course, this is

an issue you wouldn’t have with devices that aren’t connected to the

Internet, but if you want IoT devices, you’ll have to adhere to some

best digital security practices, detailed later on.

https://www.security.org/smart-home/smart-lights/costs/
https://www.security.org/smart-home/smart-lights/costs/

Pros and Cons of Home Automation
Sl.No Pros Cons

3 Energy efficiency: How many times have you left

the heat on blast while you’re out of the house

for eight hours? With home automation, you can

set things like thermostats on schedules to make

sure you’re not wasting energy. A study found

that Nest thermostats in particular can save

about 12 percent on heating and

cooling costs,6 for example. That means that over

time, these smart thermostats can actually pay

for themselves in savings.

New technology: Since IoT is a relatively new

technology, you may run into some bugs, like devices

having trouble connecting to the Internet or

experiencing lag, depending on the device’s make and
model.

4 Convenience: Being able to control devices

remotely or via voice commands, set them on

schedules, and even sync them with the sunrise

and sunset is nothing is not convenient. Imagine

being able to come down in the morning to

freshly made toast without you having to push a

button!

Surveillance: If privacy is a huge concern, then smart

security is probably not for you, as users can livestream

footage from the camera’s respective app. Instead, you

might want to opt for a local alarm system; SimpliSafe

has an option if you don’t pay for the monthly plan,

detailed in our SimpliSafe security review.

https://www.security.org/home-security-systems/simplisafe/review/

Pros and Cons of Home Automation
Sl.No Pros Cons

5 Safety: Finally, there are many smart security

products that can increase your home’s safety,
like sensors for doors and windows, security

cameras that can detect people, and video

doorbells that let you greet whoever’s knocking
from anywhere with Internet.

Dependency on Internet:

The basic requirement for the smart home system is the

internet. Without a good and strong internet connection,

you will not be able to take control of this. If there is no

internet connection for some reason, there is no other

way through which you can access and control your

system.

6 Increased homes value: According to top real

estate analysts, an investment in smart home

technology can help increase your home’s resale
value. Many home-buying consumers are willing

to pay for the features that are associated with

smart homes. Check professional home

reviews for further clarification.

Dependency of the Professionals:

The basic requirement for the smart home system is the

internet. Without a good and strong internet connection,

you will not be able to take control of this. If there is no

internet connection for some reason, there is no other

way through which you can access and control your

system. so it is very important to pick a good quality

internet service provider here in Kozhikode. Airtel, Jio

and Asianet are some good service providers.

In case there is a problem with the smart home system,

you cannot simply call a handyman or someone similar

to repair or manage the bug. You will have to depend on

the professionals. Only the company professionals can

https://www.security.org/security-cameras/best/
https://www.security.org/security-cameras/best/
https://www.security.org/doorbell-camera/best/
https://www.security.org/doorbell-camera/best/
https://homeexpertreviews.com/
https://homeexpertreviews.com/

What Is A Smart Home?
• A smart home is any home that includes automated, Internet of

Things devices connected to mobile applications. Using these IoT
devices, users can control many things in their home from lights to
security systems to appliances.

• Increasingly, more and more homes are built with automation from
the original construction, but technically, any home with an internet
connection and IoT devices counts as a smart home.

How To Set Up Home Automation
• Setting up your home automation system is actually a lot less

complicated than it may seem. You can either wing it and buy a smart
home product that sounds like it’s up your alley, or set up your smart
home more strategically by following these easy steps:

• Smart home ecosystem: First, choose which “smart home ecosystem”
you want to be a part of, and by that we mean Amazon or Google,
most likely. This will determine which voice assistant you use, which
will then determine which IoT devices will work with your system. Of
course, you can use products that work with both Alexa and Google
Assistant, but it might be a little confusing to have to remember
which voice assistant to use with which IoT device, so we recommend
sticking to one or the other. Once you’ve decided which voice
assistant is for you, buy a compatible smart speaker or a smart display
to kick off your home automation system.

How To Set Up Home Automation

• Control protocol: Next, decide which protocol you want your devices
to communicate with, be it WiFi, Z-Wave, ZigBee or others. If you’re
just starting off with a smart home, WiFi will be your most
straightforward option, as most IoT devices work with WiFi.

• Types of products: Next, go room by room and decide which types of
products you’ll need, be it security cameras, light bulbs, locks, coffee
makers, and the like. Our buying guide below can help!

• Brands: Then, do some research as to the best smart home
companies; the reviews on our website go over the most popular
brands like Ring, Nest, SimpliSafe, Alder Security, and more.

• Devices: Now it’s time to actually buy your IoT devices. We
recommend buying in bulk, as many companies offer discounts for
larger packages.

How To Set Up Home Automation
• Installation: Now, it’s time to actually install the IoT devices where

you want them. Most IoT devices have DIY installation, meaning you
can do it yourself for free. However, some companies like Vivint and
ADT require professional installation for their smart security systems,
so be sure to factor in installation cost, if any, to your bottom line. To
learn more, read our pages on Vivint’s costs and ADT’s costs.

• Customize settings: So you’ve researched, purchased and installed
your IoT devices in your home. What’s next? Now, the fun can really
start, as you can customize the devices to your liking, whether that
means setting them on schedules, dimming lights, or having devices
trigger one another. We’ll talk more about these features in a bit, but
first, let’s talk about the IoT devices actually available on the market
today.

https://www.security.org/home-security-systems/vivint/
https://www.security.org/home-security-systems/adt/

Internet of Things Devices-Home Automation
• In 2015, there were 15 billion IoT devices. By 2020, that number had ballooned to

200 billion8 Iot devices and counting. While we can’t list all of the IoT devices available,
as that list is ever-growing, here are some of the most popular:

• Lights: Smart lights are one of the more affordable IoT devices out there, and they make
adjusting your lighting more convenient and customizable than ever before. With most
smart bulbs, we could change their color, dim them, set them onto schedules, or even
have them blink to the beat of our music. That beats a $3 bulb from the hardware store!

• Thermostats: Smart thermostats let us adjust our home’s temperature remotely as well
as set it onto schedules, saving our money on heating and cooling.

• Locks: Smart locks definitely upped our home’s security. They locked automatically as
soon as we exited the home, but if we needed to let someone in when we weren’t
home, we could either unlock them through the app or give our guests a temporary
passcode, certainly safer than leaving a key under the welcome mat. Explore your
options in our picks for the best smart locks.

• Video doorbells: Video doorbells are essentially outdoor cameras that may or may not
be hardwired into your existing doorbell setup, if you have one. We got notified
whenever the doorbell was pressed or the camera detected motion or a person,
depending on its artificial intelligence capabilities.

https://www.security.org/smart-locks/best/

Internet of Things Devices-Home Automation
• Security cameras: Security cameras let you see what’s going on at home

from a mobile application; you’ll also be notified of motion or people,
again, depending on the camera’s AI.

• Security systems: Smart security systems typically include motion, entry
and glass break sensors, alerting you of motion, doors and windows
opening and closing, and, you guessed it, glass breaking. For more
information, check out our take on 2021’s best home security systems.
TVs and remotes: Google, turn the volume up 10 percent! In our home, we
use smart TVs like Apple TV, Fire TV and Chromecast, which is either built
into smart TVs or plugs into a TV’s USB port.

• Speakers: Smart speakers are often the basis for a smart home ecosystem,
allowing for voice commands through the voice assistants. For example,
when we tell our Chromecast to pause, we’re not speaking directly to the
Chromecast device plugged into our TV, but instead our Nest Mini, which
has the speaker and microphone necessary for us to communicate with
Google Assistant.

https://www.security.org/home-security-systems/best/

Internet of Things Devices-Home Automation

• Displays: Smart displays work the exact same way as smart speakers, with
voice assistants built-in; the major difference is that they have screens and
often cameras, allowing for more entertainment and video chatting
options. Smart displays tend to cost a lot more than smart speakers, so if
you’re on a budget, we’d recommend going with a smart speaker over a
smart display.

• Medical care: If you have a senior in your life you’d like to care for and
monitor remotely, there are a number of WiFi-connected medical alert
systems available, many of which include detection for falls.

• Other IoT products: We’ve seen everything from Alexa-enabled
microwaves to smart plugs, scales, smoke detectors and CO detectors.
While our site focuses on smart home security like cameras and systems,
home automation goes much further, with IoT devices in a number of
different categories. Plus, you can turn off your smoke alarm from your
phone, which is incredibly convenient.

https://www.security.org/home-security-systems/smoke-alarm-chirping/
https://www.security.org/home-security-systems/turn-off-smoke-alarm/

IoT Features

• Once your IoT devices are bought and set up, it’s time to create the home
automation functionalities that sold you on the devices in the first place.

• Remote control: First and foremost, all home automation devices can be
controlled remotely through a mobile application, whether that means disarming
a security system for a neighbor, saying hi to a visitor through a video doorbell, or
shining a light on an overnight guest who can’t find the switch themselves.

• Voice assistants: Most IoT devices can also be controlled by voice commands via
voice assistants, most commonly Alexa and Google Assistant.
Schedules: Many IoT devices can also be put onto schedules so that they turn off
and on automatically throughout the day. This is particularly useful for smart
lights and thermostats, things that you may forget to adjust as you enter and exit
your home each day.

• Geofencing: To make things even easier, you can connect the GPS onto your
phone to certain IoT devices to make them turn off and on based on your
location. An example? We had our doors unlock whenever we were nearby,
which saved us the trouble of searching in our bag for our keys.

IoT Features

• Triggers: Devices of the same brand, or of different brands, can trigger one
another, depending on their compatibility. For example, Ring devices can
obviously work with each other, like having a security system trigger an
outdoor light to go on. However, Ring products also work with third-party
IoT devices from companies like Dome, First Alert, EcoLink and GE, allowing
for more home automation opportunities. Learn more about Ring’s smart
home compatibility on our Ring costs page.

• IFTTT: Got two devices that can’t connect directly on the app? Some
devices work with IFTTT, which stands for If This Then That. IFTTT lets
devices of different brands trigger one another; for example, Wyze cameras
work with IFTTT, so they can work with Arlo cameras even though the
companies don’t have a direct partnership. To learn more, read our Wyze
cameras review and our Arlo cameras review.

• App: Finally, each IoT device has a corresponding app that allows for all of
the above features, so it’s important that it’s user-friendly. As software
updates can make improvements, be sure to check the app’s current
ratings from wherever you downloaded it.

https://www.security.org/security-cameras/ring/
https://www.security.org/security-cameras/wyze/review/
https://www.security.org/security-cameras/wyze/review/
https://www.security.org/security-cameras/arlo/review/

IoT Features

• Home and away modes: This doesn’t apply to all IoT devices, but some
smart home products like bulbs can be set to what’s called home and away
modes. Consider this: many people keep their lights on all day to make it
seem like they’re home, supposedly preventing burglaries. However, this is
pretty unrealistic, as even when you’re home, you probably don’t leave all
the lights on all the time. With away mode, the lights will turn off and on at
random, which more closely mimics real life. Home mode, on the other
hand, may have some devices off and some devices on, customized to your
liking so you can access it easily whenever you’re home.

• Scenes: Scenes are groups of IoT devices that you can control at once
rather than having to control each one individually. For example, we have
all of the smart bulbs in our living room grouped together into a scene so
we can dim them all at once.

• Energy monitoring: Want to see exactly how much energy your IoT device
is using? Some bulbs and thermostats have energy monitoring so you can
see how much you’re saving.

Securing IoT Devices
• With some IoT devices, digital security can be more of an afterthought, not

originally built into many first-generation models. However, as security
breaches become more commonplace, many manufacturers are changing
their ways, making their IoT devices less hackable. But ultimately, it’s up to
the user to take advantage of these digital security features. Here’s how:

• Secure router: One of the most straightforward ways to secure your home
automation system is to use a secure router from a company other than
your Internet Service Provider; we recommend looking into routers from
NETGEAR, Linksys, and TP-Link.

• Privacy policy: Sure, it may be time-consuming and more than a little bit
boring, but it’s important to actually read the company’s privacy policy to
see what customer data they keep and how they share it and sell it to third
parties.

• Name router: Be sure to give your router a name other than the one that it
came with.

https://www.security.org/digital-safety/

Securing IoT Devices
• Encryption: Choose a strong encryption method for your WiFi, like WPA2.

• WiFi password: Make sure your WiFi network has a long, complicated,
and unique password. Of course, this makes it harder to add guests, but it
also prevents others from hopping on (and hacking your IoT devices).

• Separate WiFi network: For the most security for your IoT devices,
consider getting a separate WiFi network for IoT devices only. This will also
create faster Internet speeds all around.

• Password hygiene: Aside from your WiFi network, your IoT account should
have a password that’s not repeated on any other account; no old, weak or
repeated passwords allowed!

• Device settings: Often, devices have features enabled by default that aren’t
necessary, and that can make your IoT devices more hackable. Be sure to
turn off these features when not in use, like WiFi, Bluetooth, and knowing
your location.

https://www.security.org/how-secure-is-my-password/

Securing IoT Devices
• Software updates: Although change can be scary, software updates are a

good thing! They often include updates specifically targeted at improving
digital security, so be sure to perform all software updates as soon as
they’re available.

• Authentication: Some companies like Ring have added two-factor
authentication to their accounts, meaning to sign in, we had to enter a
passcode that was sent to our phones. This made sure that only us, the
authorized users, could access our accounts. For even more authentication,
look for accounts that allow for fingerprint or facial ID, known as multi-
factor authentication. You can also add on either type of authentication
through a password manager; for example, we use LastPass’ Touch ID to
access all accounts on our iPhones.

• VPN: Finally, if you’re using an IoT device on a public Wi-Fi network, like a
smart plug powering your laptop in a coffee shop, connect to a VPN, or
Virtual Private Network, to encrypt your web traffic and hide your
IP address.

References

• https://www.security.org/home-automation/

CSPC702-EMBEDDED SYSTEMS
AND INTERNET OF THINGS (IOT)

UNIT - IV Network and communication aspects

Syllabus

• UNIT - IV Network and communication aspects

• Wireless medium access issues, MAC protocol survey, Survey routing
protocols, Sensor deployment & Node discovery, Data aggregation &
dissemination- Applications of IoT: Home automation, Industry
applications, Surveillance applications, Other IoT applications.

Applications of IoT: Home automation
Smart home automation using IoT

• What is home automation using IoT today?

• Today, a smart home lives up to the consumer’s expectations and sometimes
even exceeds them, and using sensors, devices, appliances and the whole spaces
in your house constantly collect data on how you use them.

• They learn about your habits and determine consumption patterns using complex
algorithms.

• These insights then help personalize your experience at a granular level.

• Based on Internet of Things, smart home devices of the new generation use their
sensor datum to automatically adjust regimes to your routines. They monitor
your location in real-time and turn the heating on and off accordingly.

• The best part is that you really don’t have to do anything. Smart thermostats rely
on their algorithms to personalize home temperature to your preferences and
save you good money on reduced energy use.

Applications of IoT: Home automation

Home automation has three major parts:

➢ Hardware

➢ Software/apps

➢ Communication protocols

✓ Each of these parts is equally important in building a truly smart home

experience for your customers. having the right hardware enables the ability to

develop your IoT prototype iteratively and respond to technology pivots with

ease.

✓ A protocol selected with the right testing and careful consideration helps you

avoid performance bottlenecks that otherwise would restrict the technology and

device integration capabilities with sensors and iot gateways.

✓ Another important consideration is the firmware that resides in your hardware

managing your data, managing data transfer, firmware ota updates, and

performing other critical operations to make things talk.

Applications of Home Automation
• Rebuilding consumer expectations, home automation has been projected to target wide array

applications for the new digital consumer. some of the areas where consumers can expect to see
home automation led IoT-enabled connectivity are:

• lighting control

• hvac

• lawn/gardening management

• smart home appliances

• improved home safety and security

• home air quality and water quality monitoring

• natural language-based voice assistants

• better infotainment delivery

• ai-driven digital experiences

• smart switches

• smart locks

• smart energy meters

The list is still not exhaustive and will evolve over the time to accommodate new IoT use cases.

Home Automation Components
• A realistic model of a smart home developed by the following given major

components. The major components can be broken into:

• iot sensors

• iot gateways

• iot protocols

• iot firmware

• iot cloud and databases

• iot middleware (if required)

• iot sensors involved in home automation are in thousands, and there are
hundreds of home automation gateways as well. most of the firmware is
either written in c, python, node.js, or any other programming language.

• the biggest players in iot cloud can be divided into a platform-as-a-service
(paas) and infrastructure-as-a-service (iaas).

Major iot paas providers

• aws iot

• azure iot

• thingworx

• ubidots

• thingspeak

• carriots

• konekt

• tempoiq

• xively

• ibm bluemix

Characteristics of IoT Platforms
• Again, these platforms are extremely divided over the iot application and security-related

features that they provide. a few of these platforms are open source.

• let’s have a look at what you should expect from a typical iot platform:

• device security and authentication

• message brokers and message queuing

• device administration

• support towards protocols like coap, mqtt, and http

• data collection, visualization, and simple analysis capabilities

• integrability with other web services

• horizontal and vertical scalability

• websocket apis for real-time for real-time information flow

• apart from what we mentioned above, more and more platform builders are open sourcing their
libraries to developers. take for example the dallas temperature library for ds18b20 for
arduino was quickly ported because of open source development to a new version that helped
developers to integrate ds18b20 with linkit one . understanding these things become crucial as iot
tends to evolve continuously and having an equally responsive platform makes it business safe to
proceed.

https://github.com/milesburton/arduino-temperature-control-library
https://github.com/leouzz/linkit-one-onewire/blob/master/onewire.cpp

Home Automation Sensors
• There are probably thousands of such sensors out there that can be a part of this list, but since

this is an introduction towards smart home technology. IoT sensors for home automation by their
sensing capabilities:

• temperature sensors

• lux sensors

• water level sensors

• air composition sensors

• video cameras for surveillance

• voice/sound sensors

• pressure sensors

• humidity sensors

• accelerometers

• infrared sensors

• vibrations sensors

• ultrasonic sensors

• depending upon what you need, you may use one or many of these to build a truly smart home
iot product. let’s have a look at some of the most commonly used home automation sensors.

Temperature Sensors
• The market is full of them, but the famous temperature

sensors are dht11/22, ds18b20, lm35, and msp430 series
from ti. the msp430 series is more accurate than the
rest, but at the same time, it is one of the most
expensive for prototyping or initial product testing
purposes. msp430 tops all temperature sensors, as the
precision and battery consumption is minimal with them.

• The dht11 has a very restricted temperature range and
suffers from accuracy issues. dht22, on the other hand, is
a little bit more accurate but still, doesn’t make it as the
preference.

• The ds18b20, on the other hand, is more accurate, as
opposed to digital temperature sensors like the dht22
and 11. dallas temperature sensors are analog and can
be extremely accurate down to 0.5 degrees.

• Take note that often, the temperatures that you directly
sense from these sensors may not be very accurate, and
you would occasionally see 1000 f or greater values no
matter what you are doing.

Lux Sensors

• Lux sensors measure the luminosity and can be used to trigger
various functions range from cross-validating movements to turn the
lights on if it becomes too dark. Some of the most popular light
sensors are TSL2591 and BH1750.

• Recent tests to include TSL2591 and BH1750 into low-powered IoT
devices have found them to be working fairly good for most of the use
cases.

• The study was done by Robert and Tomas that shows how these two
compare against a spectrometer and a photodiode.

• To get a good idea of whether these two sensors would suffice your
needs we would suggest illuminance tests followed by normalization
of the data to observe deviations under various situations.

http://ac.els-cdn.com/S1474667015373596/1-s2.0-S1474667015373596-main.pdf?_tid=5fa5d922-546c-11e7-96ea-00000aacb35e&acdnat=1497821189_f4a5ece27d053d540a1f70d12f455122

Lux Sensors

Water level sensors for Home Automation

• While building your prototype you may consider a solid state eTape
liquid level sensor, or like others who just use an HC-SR04 ultrasonic
sensor to measure the water level sensor.

• On the other hand, in other cases where those two don’t suffice, one
has to utilize something that can deliver a much higher performance.

• Float level sensors and other ICs like LM1830 offers a more precise
measurement capability to IoT developers. Although, they are
substantially much more expensive than others.

Air composition sensors
• There are a couple of specific sensors that are used by

developers to measure specific components in the air:

• CO monitoring by MiCS-5525

• MQ-8 to measure Hydrogen gas levels

• MiCS-2714 to measure nitrogen oxide

• MQ135 to sense hazardous gas levels (NH3, NOx,
Alcohol, Benzene, smoke, CO2

• Most of these are sensors have a heating time, which
also means that they require a certain time before
they actually start delivering accurate values.

• These sensors mainly rely on their surface to detect
gas components. When they initially start sensing,
there’s always something that’s there on their surface,
some sort of deposition that requires some heating to
go away.

• Hence, after the surface gets heated enough true
values start to show up.

Video cameras for surveillance and analytics
• A range of webcams and cameras specific to Hardware development

kits are usually used in such scenarios. Hardware with USB ports
offers to integrate and camera module to build functionalities.

• But, utilizing USB ports in not very efficient, especially in the case of
real-time video transfer or any kind of video processing.

• Take RaspberryPi for example, it comes with a camera module (Pi
cam) that connects using a flex connector directly to the board
without using the USB port. This makes the Pi cam extremely
efficient.

Sound detection for Home Automation
• Sound detection plays a vital role from monitoring babies to turning

on and off lights automatically to automatically detecting your dog’s
sound at the door and opening it up for them.

• Some commonly used sensors for sound detection includes SEN-
12462 and EasyVR Shield for rapid prototyping.

• These sensors aren’t as good as industrial grade sensors like those
from 3DSignals which can detect even ultra-low levels of noise and
fine tune between various noise levels to build even machine break
up patterns.

https://www.3dsig.com/

Humidity sensors for Home Automation
• These sensors bring the capability of sensing humidity/RH levels in air for

smart homes. The accuracy and sensing precision depends a lot on multiple
factors including the overall sensor design and placement.

• But certain sensors like DHT22 and 11 built for rapid prototyping would
always perform poorly when compared to high-quality sensors like
HIH6100 and Dig RH.

• While building a product to sense humidity levels, ensure that there’s no
localized layer of humidity that is obscuring the actual results. Also, keep
into consideration that in certain small spaces, the humidity might be too
high at one end as compared to the others.

• When you look at free and open spaces where the air components can
move much freely, the distribution around the sensor can be expected to
be uniform and subsequently would require very less amount of corrective
actions for the right calibration.

Home Automation Protocols
• One of the most important parts of building a home automation product is

to think about protocols, protocols that your device would use to
communicate to gateways, servers, and sensors. A few years ago, the only
way to do so was by either using Bluetooth, wifi or GSM. But due to added
expenses on cellular sim cards, and low performance of Wifi, most such
solutions didn’t work.

• A few years ago, the only way to do so was by either using Bluetooth, wifi
or GSM. But due to added expenses on cellular sim cards, and low
performance of Wifi, most such solutions didn’t work.

• Bluetooth survived and later evolved as Bluetooth Smart or Bluetooth low
energy. This helped bring a lot of connectivity in the “mobile server
powered economy”, in this essentially your phone would act as a
middleware to fetch data from BLE powered sensors and sent it over to the
internet.

Home Automation Protocols
• When looking at the major home automation protocols, the following tops the

list:

• Bluetooth low energy or Bluetooth Smart: Wireless protocol with mesh
capabilities, security, data encryption algorithms and much more. Ideal for IoT-
based products for smart homes.

• Zigbee: Low cost, mesh networked and low power radio frequency based
protocol for IoT. Different Zigbee versions don’t talk to each other.

• X10: A legacy protocol that utilizes powerline wiring for signaling and control

• Insteon: Communicates with devices both wirelessly and with wires

• Z-wave: Specializes in home automation with an emphasis on security

• Wifi: Needs no explanation

• UPB: Uses existing power lines installed in a home, reduces costs

• Thread: A royalty-free protocol for smart home automation, uses a 6lowpan

• ANT: An ultra low power protocol helping developers build low-powered sensors
with a mesh distribution capabilities.

• 6lowpan

Home Automation Protocols-
Home Automation: Which protocol is the best?

• While there are some protocols that clearly offer much more than others,
but it is always important to start from your smart home development
needs and then move towards narrowing down the solutions.

• The commonly preferred protocols are Bluetooth low energy, Z-wave,
Zigbee, and Thread. The protocol selection can now be narrowed down by
the following factors:

• Ability to perform identity verification

• Quality of sensor networks

• Data transfer rate

• Security level

• Network topology required

• Density of objects around

• Effective Distance to be covered

Home Automation Architecture

Home Automation Architecture
• This architecture supports the following considerations for home

automation solutions:

• End to end security mechanisms involving multilevel authentication

• End to end data encryption, including the link layer

• Flexible and configurable access and authorization control

• Powerful cloud infrastructure

• Network agnostic with built-in feedback loops

• Configurable cloud-based rules engine

• API endpoints

• Data scalability

• NoSQL databases

Home Automation Gateways
• For developing a home automation product, often stand-alone

product sending data to a server is not enough. Often due to battery
and protocol limitations, the data from a sensor or sensors present in
a home has been routed through an IoT gateway.

• To select the perfect gateway for your IoT home automation, consider
some of the factors including:

• Communication protocols supported

• Real-time capabilities

• MQTT, CoAP, HTTPS support

• Security and configuration

• Modularity

Home Automation Gateways

• When it comes to building IoT gateways, modularity and hybrid IoT protocol
support top that list when a product is in the early stages of market introduction.

• To incorporate a gateway in your home automation stack you can consider the
following options:

• Either create a Gateway from the ground up using existing hardware stacks for
prototyping(using Raspberry Pi, Intel Edison, etc). Then when a PoC is validated
you can create your own custom hardware.

• Or, you can use existing gateway modules like Ingincs BLE gateway. These
gateways are extremely easy to customize and connect with your cloud services
and devices. However, they may or may not offer the same level of support that
you need to build certain features.

• For example, a gateway with a bad networking queue may result in traffic
congestion, or it may not support the required protocols that you wish to use.

• Further, pivoting with these gateways to some other technology stack may
become very difficult. It should have been emphasized that they are extremely
good for robust prototyping needs.

https://www.ingics.com/ble_wifi_gw.html

Home automation programming language for
smart home developers

• The following programming languages dominated the home
automation space:

• Python,

• Embedded C, C,

• Shell, Go,

• Javascript (node.js).

• This has mainly happened due to the sheer optimization of the
languages for similar use cases.

Home Automation frameworks

• If you think you can build everything from home automation (protocols,
hardware, software, etc) on your own, it is a bit unrealistic. Everyone
starting from high growth startups to billion dollar consumer focused
enterprises are now taking the help of home automation frameworks to
build connected products to delight consumers.

• Everyone starting from high growth startups to billion dollar consumer
focused enterprises are now taking the help of home automation
frameworks to build connected products to delight consumers.

• There are more than 15 different smart home frameworks available for IoT
developers to use and build their next generation of connected home
products.

• Some of these frameworks are open source and some are closed-source.
Let’s have a look at some of them in the sections that follows.

Home Automation Framework

• Open source IoT platforms and frameworks for Home Automation

• Looking forward to doing a quick and dirty prototype? There’s no need to
write down everything from scratch. Thanks to a bunch of awesome
contributions by people like we have open source platforms that can get
your home automation products up and running in no time.
• Home Assistant

• Calaos

• Domoticz

• OpenHAB: Supports Raspberry Pi, written in Java and has design tools to build your
own mobile apps by tweaking UI.

• OpenMotics[Asked their developer, waiting for them to respond(dev confirmed)]

• LinuxMCE

• PiDome

• MisterHouse

• Smarthomatic

Home Assistant for smart home development:
• Supports RaspberryPi, uses Python with OS as Hassbian. It has

simplified automation rules that developers can use to build their
home automation product saving them thousands of lines of code.

• Home Assistant supports the following:

Home Assistant for smart home development:
• How home assistant works involve the following:

• Home control responsible for collecting information and storing devices

• Home automation triggers commands based on user configurations

• Smart home triggers based on past user behavior

• As developers, it is very important for us to understand the architecture of Home
Assistant for us to build high-performing products on top of it.

• Let’s have a look at Home control’s architecture that makes control and
information flow possible.

• Home control consists of five components:

• Components

• State machine

• Event bus

• Service registry

• Timer

Home Assistant for smart home development

• The core architecture of Home Assistant

Home Assistant for smart home development

• All of these components working together create a seamless
asynchronous system for smart home IoT. In the earlier version of
Home Assistant core, the core often had to stop while looking for new
device information.

• But, with the new versions of home assistant, a backward compatible
API, and ansyn core have been introduced making things a lot faster
for IoT applications.

• The best part about home assistant’s core architecture is how
carefully it has been designed and developed to support IoT at home.

Home Assistant for smart home development

• OpenHAB for Smart home automation

• OpenHAB is a home automation and IoT gateway framework for
smart homes. Similar to Home Assistant, OpenHAB works nicely with
Raspberry Pi and comes with their own design tools to create a UI for
your home automation product.

• An understanding architecture of OpenHAB:

• Modularity: It is realized with the bundle concept

• Runtime dynamics: so that software components can be managed at
the runtime

• Service orientation: there are services for various components to
speak with each other and exchange information

OpenHAB for Smart home automation

• Further relying on the OGSi framework, it leverages the following
layers stacked together:

• Modular layer: Manages dependencies between bundles

• Life cycle layer: controls the life cycle of the bundles

• Service layers: defines a dynamic model of communication between
various modules

• Actual services: this is the application layer, using all other layers

• Security layer: optional, leverages Java 2 security architecture and
manages permissions from different modules

OpenHAB Architecture

OpenHAB features

• Plugin framework

• Rules engine

• Logging mechanism

• UI abstraction: A tree structure for UI Widgets, Item UI providers, and
dynamic UI configuration

• UI implementations are available for the web, Android, and iOS

• Designer tools availability

• OpenHAB has been primarily only been observed as a project for the
hobbyist programmer, even many parts of openhab.org convey the same.
But, we have observed a different effort in the recent times from OpenHAB
into building the developer economy for building IoT smart homes.

How Does a IoT based Home Automation
System Work?

• The concept of Home Automation aims to bring the control of operating
your every day home electrical appliances to the tip of your finger, thus
giving user affordable lighting solutions, better energy conservation with
optimum use of energy. Apart from just lighting solutions, the concept also
further extends to have a overall control over your home security as well as
build a centralised home entertainment system and much more.
The Internet of Things (or commonly referred to as IoT) based Home
Automation system, as the name suggests aims to control all the devices of
your smart home through internet protocols or cloud based computing.

• The IoT based Home Automation system offer a lot of flexibility over the
wired systems s it comes with various advantages like ease-of-use, ease-of-
installation, avoid complexity of running through wires or loose electrical
connections, easy fault detection and triggering and above and all it even
offers easy mobility.

https://smartify.in/knowledgebase/what-is-home-automation/

Home Automation System using IoT

Basic Setup-Home Automation
➢ Thus IoT based Home

Automation system consist of
a servers and sensors. These
servers are remote servers
located on Internet which
help you to manage and
process the data without the
need of personalised
computers.

➢ The internet based servers can
be configured to control and
monitor multiple sensors
installed at the desired
location.

Home Automation-Working Process
• Controller: The Brain of Your System

• The main controller or the hub is the most essential part of your Home
Automation system irrespective of whether you connect single or multiple
sensors in your home. The main controller or the hub is also referred to as
gateway and is connected to your home router through the Ethernet cable.
All the IoT based sensors transmits or receive commands through the
centralised hub. The hub in turn receives the input or communicates the
output to cloud network located over the internet.

• Due to this kind of architecture, it is possible to communicate with the
centralised hub even from remote and distant locations through your
smartphone. All you need is just a reliable internet connection at the hub
location and the data package to your smartphone that helps you connect
to the cloud network.

• Most of the smart home controllers available in the market from several
manufacturers cater to all three widely used protocols of wireless
communication for Home Automation: ZigBee, Z-Wave and Wi-Fi.

Home Automation-Working Process

• Smart Devices: The Sensory Organs of Your Home

• The IoT based home automation consist of several smart devices for different
applications of lighting, security, home entertainment etc. All these devices are
integrated over a common network established by gateway and connected in a
mesh network. This means that it gives users the flexibility to operate one sensor
based followed by the action of the other. For e.g. you can schedule to trigger the
living room lights as soon as the door/windows sensor of your main door triggers
after 7pm in the evening.

• Thus all the sensors within a common network can perform cross-talk via the
main controller unit. As shown in the figure, some of the smart sensors in home
automation acts as sensor hubs. These are basically the signal repeaters of signal
bouncers which that are located in the midway between the hub installation
location and the sensors that are at a distant location. For such long distances,
these sensor hubs play an important role to allow easy transmission of signals to
sensors that are far away from the main controller but in closer proximity to the
sensor hub. The commonly used sensor hubs in IoT based Home Automation
system are Smart Plugs.

Home Automation-Working Process

• Wireless Connectivity: How the Internal Communication Occurs

• Most of the IoT based Home Automation systems available today work on
three widely used wireless communication protocols : Wi-Fi, ZigBee and Z-
Wave

• The ZigBee and the Z-Wave controllers are assigned a network ID which is
distributed over other sensors in the network. The communication
amongst devices take place in a mesh topology where there is no fixed
path for the signals transmitted from the controller to the sensors and vice
versa. Depending on the availability of the shortest path the signal from
the controller will travel to the target sensors either directly or through
signal hops. If any intermediate sensor in the pathway is busy or occupied
the signal will trace another path within the mesh network to reach the
final destination. Note that sensors with different Network IDs cannot
communicate with each other over common channel.

Home Automation-Working Process

• Connected with the Cloud: Access Everything on the Go

• The Cloud-based-Networking system involves storage and
maintenance of data over the Internet location. This gives users the
flexibility to have access to the data from any location on the planet.

• As a result of this, in IoT based Home Automation systems users over
the cloud network can send commands to the hub even from a
distant or remote location. The hub will further send the signal for the
intended sensors to trigger and perform the user-requested action.
Once the action is performed, the hub will update the status of the
action taken to the cloud network and in this way users can control
and monitor every aspect of their smart homes.

Home Automation-Working Process

• Events and Notifications: Get Notified Instantly

• Real-time monitoring and notifications is one of the key features of IoT
based Home Automation systems. Since the hub is connected over the
cloud network through the Internet, you can schedule various events as
per your routine activities or daily schedules. The cloud network can
receive and store all the user inputs and transfer them to the hub as per
the scheduled events.

• Once the hub transfer the desired signals to the target sensor and the
desired action takes places, it will quickly upload the new status over the
cloud notifying user instantaneously. For e.g. the motion sensor will
instantaneously notify the user wither through emails, SMS, calls or App
notifications when it detects any unwanted motion or intrusion. After
receiving such notification, the user can quickly turn on the IP based home
security smart camera can check the status of your home even from
remote location.

Home Automation-Working Process

• IFTTT Integration: Put Internet to Work for You

• It is not practically possible to trigger every action one by one in your day
long busy schedule. This is where you can put the Internet to work for you.
The IF This Then That (IFTTT) Integration helps you in this condition.

• This enables you to create cascading effect of actions where the target
action will trigger only when the IF condition is satisfied. Some of the
examples of IFTTT triggers are like “IF” day temperature above 25 degrees,
turn the ACs on and roll-down the curtain blinds. IF Movie Mode is ON,
then turn the lights to 10% brightness, IF soil moisture less then specific
values, turn the water sprinklers in the garden ON.

• There are endless possibilities that you can create with IFTTT triggers and
thus make the optimum use of your Home Automation system thereby
making optimum use of energy and simultaneously enjoying a comfortable
lifestyle.

Thank you

CSPC702- EMBEDDED SYSTEMS
AND INTERNET OF THINGS (IOT)

UNIT - IV Network and communication aspects

Syllabus

• UNIT - II Network Challenges and applications of IoT

• Network and communication aspects: Wireless medium access issues,
MAC protocol survey, Survey routing protocols, Sensor deployment &
Node discovery, Data aggregation & dissemination- Design
challenges- Development challenges-Security challenges. Applications
of IoT: Home automation, Industry applications, Surveillance

applications, Other IoT applications.

Applications of IoT: Industry applications

• The Following are some of the industrial applications in the current
days.

• Automated and remote equipment management and monitoring

• Predictive maintenance

• Faster implementation of improvements

• Pinpoint inventories

• Quality control

• Supply chain optimization

• Plant safety improvement

Applications of IoT: Industry applications

• Automated and remote equipment management and monitoring

• One of the main IIoT applications is related to the automated
management of equipment, allowing a centralized system to control
and monitor all company processes.

• This ability to remotely control equipment via digital machines and
software also implies that it is possible to control several plants
located at different geographic locations.

• This gives companies an unprecedented ability to oversee advances in
their production in real time, while also being able to analyze
historical data that they obtain in relation to their processes. The
objective of collecting and using that data is to support the
improvement of processes and generating an environment
where information-based decisions are a priority.

https://nexusintegra.io/blog/benefits-of-an-industrial-automation-system/
https://nexusintegra.io/blog/benefits-of-an-industrial-automation-system/

Applications of IoT: Industry applications
• Predictive maintenance

• Predictive maintenance consists of detecting the need for a machine
to be maintained before a crisis takes place and production needs to
be stopped urgently. It is therefore among the reasons to implement
a data acquisition, analysis and management system.

• This system is one of the most effective Industrial IOT applications
and works via sensors that, once installed on the machines and
operating platforms, can send alerts when certain risk factors
emerge. For example, the sensors that monitor robots or machines
submit data to the platforms, which analyze the data received in real
time and apply advanced algorithms that can issue warnings
regarding high temperatures or vibrations that exceed normal
parameters.

https://nexusintegra.io/blog/10-reasons-why-you-should-include-a-data-acquisition-system-in-your-company/
https://nexusintegra.io/blog/10-reasons-why-you-should-include-a-data-acquisition-system-in-your-company/

Applications of IoT: Industry applications

• Faster implementation of improvements

• IIoT generates valuable information so that those in charge of
improving processes in an industrial business model (process, quality
or manufacturing engineers) can access data and analyze it faster and
automatically, and remotely perform the necessary processes
adjustments. This also increases the speed in which changes and
improvements are applied in Operational Intelligence and Business
Intelligence – changes that are already offering competitive
advantages to a myriad of industrial businesses.

https://nexusintegra.io/blog/operational-intelligence-key-for-business-decisions/

Applications of IoT: Industry applications
• Pinpoint inventories

• The use of Industrial IoT systems allows for the
automated monitoring of inventory, certifying whether plans are
followed and issuing an alert in case of deviations. It is yet another
essential Industrial IOT application to maintain a constant and

efficient workflow.

Applications of IoT: Industry applications

• Quality control

• Another entry among the most important IIoT applications is the
ability to monitor the quality of manufactured products at any stage:
from the raw materials that are used in the process, to the way in
which they are transported (via smart tracking applications), to the
reactions of the end customer once the product is received.

• This information is vital when studying the efficiency of the company
and applying the necessary changes in case failures are detected,
with the purpose of optimizing the processes and promptly detect
issues in the production chain. It has also been proven that it is
essential to prevent risks in more delicate industries, such as
pharmaceutics or food.

Applications of IoT: Industry applications

• Supply chain optimization

• Among the Industrial IoT applications aimed at achieving a higher
efficiency, we can find the ability to have real time in-transit

information regarding the status of a company’s supply chain.

• This allows for the detection of various hidden opportunities for

improvement or pinpointing the issues that are hindering processes,
making them inefficient or unprofitable.

Applications of IoT: Industry applications

• Plant safety improvement

• Machines that are part of IIoT can generate real-time data regarding
the situation on the plant. Through the monitoring of equipment
damages, plant air quality and the frequency of illnesses in a
company, among other indicators, it is possible to avoid hazardous

scenarios that imply a threat to the workers.

• This not only boosts safety in the facility, but also productivity and

employee motivation. In addition, economic and reputation costs
that result from poor management of company safety are minimized.

Applications of IoT: Surveillance applications

• Five Useful Video Analytics Applications For IoT Surveillance

1. Facial Recognition

2. Medical Intervention

3. License Plate Recognition

4. Behavioral Prediction

5. Event Detection

Applications of IoT: Surveillance applications
• Facial Recognition

• High performance GPUs use sequential and parallel compute for biometric identification
deployments. The leading application for biometric processing — facial recognition —
processes various features, textures and shapes of a subject’s face for immediate cross-
referencing with a secure database. AI and machine learning improve facial recognition
speed and accuracy, far exceeding the capabilities of human monitoring by validating
with a deep neural network for machine intelligence.

• A rugged NVR computer performing facial recognition processes at an unmanned airport
security touchpoint can provide a finer screening with a highly accurate person-of-
interest identification rate. Over time, system capabilities improve with the ability to
identify subjects at greater distances with more data and information.

• Thermal cameras used for facial recognition can form additional layers of security at
identification touchpoints. Long-wave thermal infrared (LWIR) cameras capture
temperature data from subjects, providing accurate images of head and face shapes that
may visually be obscured by glasses, facial hair or deceptive prosthetics, even in low-light
environments. Rugged NVR computers processing a combination of images from
standard visual and LWIR cameras offer stronger security than either input alone.

https://premioinc.com/pages/facial-recognition-with-edge-computer
https://premioinc.com/pages/facial-recognition-with-edge-computer

Applications of IoT: Surveillance applications
Facial recognition can also be applied to customer service in many applications. Management may be alerted

when priority customers or exclusive club members enter the premises, allowing them to deliver personal

attention to the patrons. Acute facial recognition identifying signs of agitation in customer waiting areas may

alert management to redirect resources to alleviate congestion and reduce wait times. Retail

establishments, casinos and large venues can all leverage facial recognition to strengthen customer loyalty

through proactive attention.

https://www.facefirst.com/blog/ways-face-recognition-can-transform-customer-loyalty/

Applications of IoT: Surveillance applications
• Medical Intervention

• Rugged NVR computers applying much of
the same facial recognition technology
used at security touchpoints can also
leverage the applications toward medical
intervention. Visual and LWIR cameras
can supply the rugged NVR computer
with image data to be analyzed for subtle
physical signs of illness or elevated
temperatures.

• Rugged NVRs can concurrently process
the same image data from camera
systems positioned for security
monitoring to passively screen subjects
for illness symptoms. By identifying
subjects for additional health screening
prior to accessing densely populated
areas like public centers, transportation
hubs or large venues, rugged NVR
computers provide a powerful tool in the
fight to contain widespread illnesses.

https://premioinc.com/pages/medical-inference-with-edge-computer
https://premioinc.com/pages/medical-inference-with-edge-computer

Applications of IoT: Surveillance applications
• License Plate Recognition

• High-resolution cameras deployed at facility parking locations and along
roadways can instantly scan volumes of license plates to locate and track
specific vehicles or maintain a record of vehicles entering or leaving an
area. Rugged NVR computers running optical character reading algorithms
accurately capture and process license plate digits automatically when the
predetermined parameter is triggered, like a vehicle entering the camera
field of view or a specific point within. The same rugged NVR computers
are also integrated in first responder vehicles like police cars to process and
store live camera footage. Police cars use these type of embedded
computers as a control hub for cameras around the vehicles to wireless
connected body cameras located on the police officer.

• Business facilities can deploy license plate recognition to automatically
grant gate access to vehicles displaying a plate registered in an approved
visitor database. In ungated areas, the system can passively maintain a
record of all vehicles that enter or depart a facility, noting dates and times,
for accountability purposes.

Applications of IoT: Surveillance applications
• K-12 educational facilities can use

license plate recognition analytics to
better safeguard students by logging
vehicles entering the grounds and which
students enter the vehicles, securing
investigative leads in the event of
abduction or missing person
situation. For higher education, license
plate recognition is a sound tool for
parking enforcement when integrated
with lot camera systems.

• In addition to improving security, smart
cities deploying license plate recognition
camera systems can factor traffic
patterns based on vehicle volume and
repeat commutes. Traffic signals can be
optimized on license plate data to
correspond with anticipated traffic
increases based on regularity and
concurrence of commutes.

Applications of IoT: Surveillance applications
• Behavioral Prediction

• The rugged NVR computer GPUs can power behavioral prediction analytics that
allow for quicker response times. The ability to anticipate how other parties may
act can be directed toward avoiding unfortunate or harmful scenarios, optimizing
processes and personalizing customer experience.

• In-vehicle rugged NVR computers can alert truckers to signs that nearby vehicles
may cut in front of them, brake suddenly or create any other dangerous situation
requiring immediate attention. Machine learning refines traffic inference
analysis, improving system response times. Behavioral predictive algorithms
identify signs of distracted or impaired drivers on the road sooner, gradually
allowing truck drivers more warning.

• In-cab cameras capturing driver behavior and rugged NVR computers
implementing a robust mix of analytics can even collate vehicle telematics like
speed, positioning and braking with images of the person behind the wheel to
note signs of dangerous driving in the truck drivers themselves. Algorithms used
to identify facial features can easily detect signs of drowsy or sleeping drivers,
prompting an alert to rouse the driver and direct them to take corrective action.

Applications of IoT: Surveillance applications

• Behavioral predictive analytics
have myriad security
applications. Public transport,
smart cities and venues can
deploy rugged NVR computers
in any surveillance environment
to single out persons displaying
very subtle signs of disruptive
behavior. Airports applying
behavioral predictive
surveillance can identify traveler
aggression that might be quickly
de-escalated through prompt
security intervention.

Applications of IoT: Surveillance applications
• Event Detection

• Rugged NVR computers deployed with event detection analytics use many of the same
algorithms for the applications listed above. Event detection can alert smart city
operators to numerous conditions that may lead to hazards for citizens, like unattended
packages in public spaces, fallen items in roadways and weather-related complications.

• The same preventative insights smart cities glean from event detection can be applied in
virtually any environment where specific programmed visual triggers alert operators to
changes from normalcy. A person or object falling onto tracks at subway and rail
terminals may alert traffic coordinators and response teams to redirect or suspend travel
until the situation has been resolved by responding security teams.

• Schools, public buildings, large venues and shopping centers can all benefit greatly
leveraging object-motion detection analytics to immediately identify firearms in the
setting. Hypersensitive gun detection algorithms instantly alert security or law
enforcement personnel upon the event of a weapon being drawn. This event detection
analytic transforms a chain notification process relying on persons under stress to
actively initiate a security process to a passive, real-time alert when a weapon is
presented. By shaving valuable minutes or seconds off police response time, gun
detection technology enables quicker intervention that can prevent disasters.

Other IoT applications
• IoT Applications – Wearables

• Wearable technology is a hallmark of IoT
applications and probably is one of the
earliest industries to have deployed the
IoT at its service. We happen to see Fit
Bits, heart rate monitors and
smartwatches everywhere these days.

• One of the lesser-known wearables
includes the Guardian glucose monitoring
device. The device is developed to aid
people suffering from diabetes. It detects
glucose levels in the body, using a tiny
electrode called glucose sensor placed
under the skin and relays the information
via Radio Frequency to a monitoring
device.

• IoT Applications – Health Care

• IoT applications can turn reactive medical-based systems into proactive wellness-
based systems.

• The resources that current medical research uses, lack critical real-world
information. It mostly uses leftover data, controlled environments, and
volunteers for medical examination. IoT opens ways to a sea of valuable data
through analysis, real-time field data, and testing.

• The Internet of Things also improves the current devices in power, precision, and
availability. IoT focuses on creating systems rather than just equipment.

Other IoT applications

Other IoT applications

• IoT Applications – Smart Cities

• By now I assume, most of you must have heard about the term Smart City.
The hypothesis of the optimized traffic system I mentioned earlier, is one of
the many aspects that constitute a smart city.

• The thing about the smart city concept is that it’s very specific to a city. The
problems faced in Mumbai are very different than those in Delhi. The
problems in Hong Kong are different from New York. Even global issues, like
finite clean drinking water, deteriorating air quality and increasing urban
density, occur in different intensities across cities. Hence, they affect each
city differently.

• The Government and engineers can use IoT to analyze the often-complex
factors of town planning specific to each city. The use of IoT applications
can aid in areas like water management, waste control, and emergencies.

Other IoT applications
• IoT Applications – Agriculture

• Statistics estimate the ever-growing world
population to reach nearly 10 billion by the
year 2050. To feed such a massive population
one needs to marry agriculture to technology
and obtain best results. There are numerous
possibilities in this field. One of them is
the Smart Greenhouse.

• A greenhouse farming technique enhances
the yield of crops by controlling
environmental parameters. However, manual
handling results in production loss, energy
loss, and labor cost, making the process less
effective.

• A greenhouse with embedded devices not
only makes it easier to be monitored but
also, enables us to control the climate inside
it. Sensors measure different parameters
according to the plant requirement and send
it to the cloud. It, then, processes the data
and applies a control action.

Other IoT applications

• Self-driven Cars

• We’ve seen a lot about self-driven cars. Google tried it out, Tesla
tested it, and even Uber came up with a version of self-driven cars
that it later shelved. Since it’s human lives on the roads that we’re
dealing with, we need to ensure the technology has all that it takes to
ensure better safety for the passenger and those on the roads.

• The cars use several sensors and embedded systems connected to the
Cloud and the internet to keep generating data and sending them to
the Cloud for informed decision-making through Machine Learning.
Though it will take a few more years for the technology to evolve
completely and for countries to amend laws and policies, what we’re
witnessing right now is one of the best applications of IoT.

Other IoT applications

• Traffic Management

• IoT Retail Shops

• Supply chain management

• Environmental monitoring

• Maintenance management.

• Water supply.

• E-Waste Management

• Smart grid and energy saving

Other IoT applications
Sl.No Application Domain Application

1 Smart mobility &

smart tourism

Traffic management, multi-modal transport Road condition

monitoring, parking system, waste collection Payment systems,

tour guide services

2 Public safety &

environmental

monitoring

Environmental & territorial monitoring Video/radar/satellite

surveillance Emergency site/rescue personal tracking, emergency

plan

3 Smart Home Plant maintenance, energy management Video surveillance,

access management, children protection Entertainment,

comfortable living

4 Smart Grid Load management, storage service, entertainment services

Sustainable mobility, booking charging slot Power

generation/distribution/storage, energy management

5 Industrial processing Real-time vehicle diagnostic, assistance driving Luggage

management, boarding operation, mobile tickets Monitoring

industrial plants

Other IoT applications
Sl.No Application Domain Application

6 Agriculture &

breeding

Animal tracking, certification and trade control Irrigation,

monitoring agricultural production & feed Farm registration

management

7 Logistics & product

lifetime management

Identification of materials/product deterioration Waterhouse

management, retail, inventory Shopping operation, fast payment

8 Medical & healthcare Remote monitoring medical parameters, diagnostics Medical

equipment tracking, secure indoor environment management,

Smart hospital services, entertainment services

9 Independent living Elderly assistance, disabled assistance Personal home/mobile

assistance, social inclusion Individual well-being, personal

behavior impact on society

Thank you

CSPC702-Embedded Systems

and Internet of Things
Unit V- Raspberry PI with Python and Arduino

Syllabus

• UNIT - V Raspberry PI with Python and Arduino

• Building IOT with RASBERRY PI- IoT Systems - Logical Design using
Python – IoT Physical Devices & Endpoints - IoT Device -Building
blocks -Raspberry Pi - Board - Linux on Raspberry Pi - Raspberry Pi
Interfaces -Programming Raspberry Pi with Python - Other IoT
Platforms – Arduino - Evolution of IOE and its benefits.

What is Raspberry pi?
➢The Rasberry pi is minimal effort master card measured PC that attachments into a

PC screen or TV.

➢Utilizations a standard console and mouse. It is a competent little gadget that

empowers individuals of any age to investigate registering.

How did the Raspberry pi get its name?

History of Raspberry pi

Launched -Raspberry pi

• In February 2012 Raspberry pi 1 model B(Basic)

• In April 2014 Raspberry pi 1 model B+ (Credit card sized)

• Improved A+ and B+ models were released a year later.

• In February 2015 Raspberry pi 2 (added more RAM).

• In November 2015 Raspberry pi Zero (General Purpose Input/Output(GPIO))

• In Febrauary 2016 Raspberry pi 3 model B released (on-board wi-fi Bluetooth
and USB boot capabilities)

• February 28,2017 the Raspberry pi Zero W(Identical to the Raspberry pi but
has the wi-fi and bluettoth functionality)

Raspberry Pi Models

Components of Raspberry Pi

How Raspberry Pi Works?
• An HDMI television or Monitor

• You will need to connect your Raspberry Pi to
a display, which means you will need an
HDMI- enabled screen of some kind or HDMI
supportable TV and connect it.

• A USB keyboard and mouse

• In order to control your Pi, you will need a
keyboard and mouse. At this point, pretty
much any USB keyboard and mouse will
work.

• An 8 GB micro SD card and card reader

• 8GB card for this. The Samsung EVO + Class
10 cards like this one are best. If your
computer does not have a card. You will want
at least an memory card one like this will do.

• A Power Supply

• The Raspberry Pi is powered by a micro USB,
much like the one you have likely used for
your phone. Since the Pi 3 has four USB
ports, it’s best to use a good power supply
that can provide at least 2.5A of current.

How do you use a Rasberry pi?

Comparison of Raspberry Pi Versions

Raspberry Pi Raspberry Pi 2 Raspberry Pi 3

Released February 2012 February 2015 February 2016

CPU ARM1176JZF-S ARM Cortex-A7 ARM Cortex-A53

CPU

Speed

700 MHz Single Core 900 MHz Quad Core 1200 MHz Quad Core

RAM 512 MB 256 MB Rev 1 1GB 1 GB

GPU Broadcom Video core IV Broadcom Video core IV Broadcom Video core IV

Storage SDHC (Secure Digital High

Capacity) Slot

Micro SDHC Model A+ and B+

Micro SDHC Slot Micro SDHC Slot

USB Ports 2 on Model B 4 4

WiFi No built-in Wifi No built-in Wifi 802.11n and Bluetooth

4.1

Applications of Raspberry Pi

➢ Simple Desktop

➢ Raspberry pi

smart mirror

➢ Gaming Device

➢ Robot

➢ CC Tv Camera

Applications of Raspberry Pi

Benefit and Limit of Raspberry Pi

• What is the benefit of Raspberry Pi?

• The Raspberry Pi is a low cost, credit-card sized computer that plugs
into a computer monitor or TV, and uses a standard keyboard and
mouse. It is a capable little device that enables people of all ages to
explore computing, and also easy to learn.

• What are the limits of a Raspberry Pi?

• The memory of the Raspberry Pi is more limited than you're probably
used to, with just 512MB or 256MB available. You can't expand that
with extra memory in the way you can a desktop PC.

Raspberry Pi in IoT

Advantages of Raspberry Pi
• This microcomputer is useful for small business that run on a lower budget to use their product or

to invent new technology that embeds the product. Small business owners can use it to automate
any small task, i.e.; such as using the Pi to run a website or use it as a small database and media
server.

• The product does not require user to have extensive programming experience since it is aimed for
the younger generation to learn about programming. Python, the programming language i.e.; Pi
uses, is a smaller amount complex than other languages available. It has better code readability
and allows the user to type concepts using fewer number of lines. Python also has a automatic
memory management function.

• The product gives a lot of room to experiment and turn it into something else i.e.; entirely
different. The SD cards on the board can be easily switched, i.e.; which allows to change the
functions of the device without spending a lot of time re-installing the software.

• The Raspberry Pi is perfect for adaptive technology and it is able to display images or play videos
i.e.; at high-definition resolution to building systems such as prototyping embedded systems. This
product makes it possible to build complex and effective at a cheaper price.

• The product is efficient and i.e.; provides an ethical alternative to small businesses. This small
card sized product i.e.; makes it easy to recycle and does not release as much carbon dioxide
emissions into the environment, i.e.; unlike big servers that need lots of energy and extensive
cooling systems.

Disadvantages of Raspberry Pi

• It does not replace the computer, and the processor is not as fast. It is
a time consuming to download and install software i.e.; unable to do
any complex multitasking.

• Not compatible with the other operating systems such as Windows.

• This is fit for those who want a gadget that they can tailor to their
own needs and tastes, i.e.; not for those that just wants to urge a job
done fast. Business owners need to consider the extra hassle if is
worth it.

• This product not be useful for bigger business that already have big
servers, i.e.; which would already do everything that the Raspberry Pi
does. So, it would not be worth and it take time to get to put it
together.

Advantages and Disadvantages of Raspberry Pi
• Advantages of Raspberry Pi

• Small in Size

• Cheap/Low cost

• Low cost server and hosting, ability to handle web traffic

• Open Source

• Can be used as super computer

• User Friendly

• Act as a small web browser

• Energy efficient

• Disadvantages of Raspberry Pi
• It cannot run X86 operating system

• Low Processor

• Unable to perform complex multitasking

• Compatibility

• Not useful forv bigger businesses

• Time Consuming

Specification of Raspberry Pi

IoT Physical Devices & Endpoints

• What are IoT physical devices and endpoints?

• An Endpoint, from an IoT perspective, is a physical computing device
that performs a function or task as a part of an Internet connected
product or service. An Endpoint, for example, could be a wearable
fitness device, an industrial control system, an automotive telematics
unit or even a personal drone unit.

• What are physical devices in IoT?

• IoT refers to any system of physical devices that receive and transfer
data over wireless networks with limited human intervention. This is
made possible by integrating compute devices in all kinds of objects.

IoT Physical Devices & Endpoints

• IoT Device

• Thing in Internet of Things(IoT) can be any object that has a unique identifier
and which can send/receive data over a network.

• IoT devices are connected to the internet and send information about
themselves or about their surroundings over a network or allow actuation
upon the physical entities or environment around them remotely.

• Some example of IoT devices are:

• A Home Automation device that allows remotely control and monitor the
appliances.

• An Industrial Machine which sends information about its operation and health
monitoring data to a server.

• A car sends information about its location to a cloud based service.

• A wireless enabled wearable device that measures data about a person such
as number of steps walked and send the data to a cloud based service.

IoT Physical Devices & Endpoints

• Basic Building block of an IoT device
• IoT stands for "Internet of Things," which means using the Internet to connect different

things. IoT is an intersection between the physical and virtual worlds. It essentially maps
virtual operations onto real interactions.

• IoT device consists of a number of modules based on functional attributes:

• Sensors:
• It can be either on board the IoT device or attached to the device. IoT device can collect

various types of information from the onboard or attached sensors such as temperature,
humidity, light intensity etc.

• The sensed information can be communicated either to other devices or cloud based
server/storage. These form the front end of the IoT devices. These are the so called
“Things” of the system.

• Their main purpose is to collect data from its surrounding (sensors) or give out data to its
surrounding (actuators). These have to be uniquely identifiable devices with a unique IP
address so that they can be easily identifiable over a large network. It should be able to
collect real time data. Examples of sensors are: gas sensor, water quality sensor,
moisture sensor etc.

IoT Physical Devices & Endpoints

• Actuation:

• IoT devices can have various types of actuators attached that allow taking actions
upon the physical entities in the vicinity of the device. Example relay switch
connected to an IoT device can turn appliances on/off based on the commands
send to the device.

• Processors:

• Processors are the brain of the IoT system. Their main function is to process the
data captured by the sensors and process them so as to extract the valuable data
from the enormous amount of raw data collected. It gives intelligence to the
data. Processors mostly work on real-time basis and can be easily controlled by
applications. These are also responsible for securing the data – that is performing
encryption and decryption of data.

IoT Physical Devices & Endpoints

• Communication:

• It is responsible for sending collected data to other devices or cloud based
servers/storage and receiving data from other devices and commands from
remote applications.

• Gateways are responsible for routing the processed data and send it to proper
locations for its (data) proper utilization. Gateway helps in to and fro
communication of the data. It provides network connectivity to the data.

• Network connectivity is essential for any IoT system to communicate. LAN, WAN,
PAN etc are examples of network gateways.

• Analysis & Processing:

• These are responsible for taking decision based upon the collected data.

• Given diagram shows the Single Board Computer(SBC) based IoT device that
includes CPU, GPU,RAM, storage and various types of interfaces and peripherals.

IoT Physical Devices & Endpoints

IoT Device• What are IoT devices?

• IoT devices are the nonstandard computing devices that connect wirelessly to a network and have
the ability to transmit data, such as the many devices on the internet of things (IoT).

• IoT involves extending internet connectivity beyond standard devices, such as desktops, laptops,
smartphones and tablets, to any range of traditionally "dumb" or non-internet-enabled physical
devices and everyday objects. Embedded with technology, these devices can communicate and
interact over the internet. They can also be remotely monitored and controlled.

• What are the IoT devices and examples of IoT devices?

• IoT devices are pieces of hardware, such as sensors, actuators, gadgets, appliances, or machines,
that are programmed for certain applications and can transmit data over the internet or other
networks. They can be embedded into other mobile devices, industrial equipment, environmental
sensors, medical devices, and more.

• There are several top devices in the market. Smart Mobiles, smart refrigerators, smart watches,
smart fire alarm, smart door lock, smart bicycle, medical sensors, fitness trackers, smart
security system etc., are few examples of IoT products.

• Why IoT Devices?

• Increasingly, IoT devices are using AI and machine learning to bring intelligence and autonomy to
systems and processes, such as autonomous driving, industrial smart manufacturing, medical
equipment, and home automation. Many of these devices are small, power- and cost-constrained
microcontroller-based systems. Network bandwidth and consumer expectations around data
privacy and user experience continue to demand more on-device processing, where data is
processed on the IoT endpoint, rather than using cloud-based approaches.

https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
https://internetofthingsagenda.techtarget.com/feature/IIoT-and-remote-work-keep-distributed-operations-moving

IoT Device
• How do IoT Devices Work?

• Different IoT devices have different functions, but they all have
similarities in terms of how they work. Firstly, IoT devices are physical
objects that sense things going on in the physical world. They contain
an integrated CPU, network adapter and firmware, and are usually
connected to a Dynamic Host Configuration Protocol server. It also
requires an IP address to function over the network.

• Most IoT devices are configured and managed through a software
application. For example, an app on your smartphone to control the
lights in your home. Some devices also have integrated web servers,
which eliminates the need for external applications. For example, the
lights switch on immediately when you enter a room.

Examples of IoT Devices
• Home Security

• The key driver behind smart and secure homes is IoT. A variety of sensors, lights, alarms and
cameras (all of which can be controlled from a smartphone) are connected via IoT to provide 24x7
security.

• Activity Trackers

• Smart home security cameras provide alerts and peace of mind. Activity trackers are sensor
devices that can monitor and transmit key health indicators in real-time. You can track and
manage your blood pressure, appetite, physical movement and oxygen levels.

• Industrial Security and Safety

• IoT-enabled detection systems, sensors and cameras can be placed in restricted areas to detect
trespassers. They can also identify pressure buildups and small leaks of hazardous chemicals and
fix them before they become serious problems.

• Augmented Reality Glasses

• Augmented Reality (AR) glasses are wearable computer-enabled glasses that help you get extra
information such as 3D animations and videos to the user's real-world scenes. The information is
presented within the lenses of the glasses and can help users access Internet applications.

• Motion Detection

• Motion sensors can detect vibrations in buildings, bridges, dams and other large-scale structures.
These devices can identify anomalies and disturbances in the structures that could lead to
catastrophic failures. They can also be used in areas susceptible to floods, landslides, and
earthquakes.

Most Popular IoT Devices in 2021
• 1. Google Home Voice Controller

• Google Home voice controller is one of the most popular IoT devices out there today. It
provides voice-enabled services like alarms, lights, thermostats, volume control and lots
more.

• 2. Amazon Echo Plus Voice Controller

• Amazon Echo Plus voice controller is another popular and reliable IoT device on the
market. It provides voice-enabled services like answering phone calls, setting timers and
alarms, checking the weather, and lots more.

• 3. August Doorbell Cam

• August Doorbell Cam is an IoT device that allows you to answer your door from any
remote location. It constantly captures motion changes and suspicious activity in your
doorstep.

• 4. August Smart Lock

• August Smart Lock is a proven and reliable security IoT device that helps users to manage
their doors from any remote location. It helps keep thieves away and provides an extra
layer of security for your home.

• 5. Foobot

• Foobot is an IoT device that can accurately measure indoor pollution. It helps to improve
the air quality in houses, cafes, workplaces, and other indoor public spaces.

https://www.flipkart.com/google-home-assistant-smart-speaker/p/itm3918ee0aca603
https://www.amazon.in/Echo-Plus-2nd-Gen/dp/B07CTTL5GR
https://august.com/
https://august.com/
https://foobot.io/

Building Blocks

• Building IOT with RASPERRY PI

• Internet of Things The Internet of Things (IoT) is a scenario in which
objects, animals or people are provided with single identifiers and the
capability to automatically transfer and the capability to automatically
transfer data more to a network without requiring human-to-human
or human-to-computer communication.

Introduction to Raspberry Pi
• The Raspberry Pi is a very cheap computer that runs Linux, but it also

provides a set of GPIO (general purpose input/output) pins that allow you
to control electronic components for physical computing and explore the
Internet of Things (IoT).

• Raspberry Pi was basically introduced in 2006.

• It is particularly designed for educational use and intended for Python.

• A Raspberry Pi is of small size i.e., of a credit card sized single board
computer, which is developed in the United Kingdom(U.K) by a foundation
called Raspberry Pi.

• There have been three generations of Raspberry Pis: Pi 1, Pi 2, and Pi 3

• The first generation of Raspberry (Pi 1) was released in the year 2012, that
has two types of models namely model A and model B.

• Raspberry Pi can be plugged into a TV, computer monitor, and it uses a
standard keyboard and mouse. It is user friendly as can be handled by all
the age groups

Introduction to Raspberry Pi
• It does everything you would expect a desktop computer to do like word-processing,

browsing the internet spreadsheets, playing games to playing high definition videos.

• All models feature on a broadcom system on a chip (SOC), which includes chip graphics
processing unit GPU(a Video Core IV), an ARM compatible and CPU.

• The CPU speed ranges from 700 MHz to 1.2 GHz for the Pi 3 and on board memory range
from 256 MB to 1 GB RAM.

• An operating system is stored in the secured digital SD cards and program memory in
either the MicroSDHC or SDHC sizes.

• Most boards have one to four USB slots, composite video output, HDMI and a 3.5 mm
phone jack for audio. Some models have WiFi and Bluetooth.

• Several generations of Raspberry Pis have been released.

• All models feature a Broadcom system on a chip (SoC) with an integrated
ARMcompatible central processing unit (CPU) and on-chip graphics processing unit
(GPU).

• Processor speed ranges from 700 MHz to 1.4 GHz for the Pi 3 Model B+ or 1.5 GHz for
the Pi 4; on-board memory ranges from 256 MB to 1 GB with up to 4 GB available on the
Pi 4 random-access memory (RAM).

Introduction to Raspberry Pi
• Several generations of Raspberry Pis have been released.

• All models feature a Broadcom system on a chip (SoC) with an integrated
ARMcompatible central processing unit (CPU) and on-chip graphics
processing unit (GPU).

• Processor speed ranges from 700 MHz to 1.4 GHz for the Pi 3 Model B+ or
1.5 GHz for the Pi 4; on-board memory ranges from 256 MB to 1 GB with
up to 4 GB available on the Pi 4 random-access memory (RAM).

• Secure Digital (SD) cards in MicroSDHC form factor (SDHC on early models)
are used to store the operating system and program memory.

• The boards have one to five USB ports. For video output, HDMI and
composite video are supported, with a standard 3.5 mm tip-ring-sleeve
jack for audio output.

• Lower-level output is provided by a number of GPIO pins, which support
common protocols like I²C. The B-models have an 8P8C Ethernet port and
the Pi 3 and Pi Zero W have on-board Wi-Fi and Bluetooth.

GPIO Pin Diagram

Raspberry Pi-Components

Raspberry Pi-Components
• Components and Peripherals

• Voltages: Two 5V pins and two 3V3 pins are present on the board, as well
as a number of ground pins (0V). The remaining pins are all general
purpose 3V3 pins

• A GPIO pin designated as an output pin can be set to high (3V3) or low
(0V). A GPIO pin designated as an input pin can be read as high (3V3) or
low (0V).

• Processor & RAM: Raspberry based on ARM11 processor. Latest version
supports 700MHz processor and 512MB SDRAM. The Central processing
unit is the brain of the raspberry pi board and that is responsible for
carrying out the instructions of the computer through logical and
mathematical operations.

• Ethernet: The Ethernet port of the raspberry pi is the main gateway for
communicating with additional devices. The raspberry pi Ethernet port is
used to plug your home router to access the internet.

Raspberry Pi-Components

• USB Ports: It has 2 USB ports. USB port provide current upto 100mA. For
connecting devices that draw current more than 100mA, an external USB
powered hub is required.

• Ethernet Port: It has standard RJ45 Ethernet port. Connect Ethernet cable
or USB wifi adapter to provide internet connectivity.

• HDMI Output: It supports both audio and video output. Connect raspberry
Pi to monitor using HDMI cable.

• Composite video Output: Raspberry comes with a composite video output
with an RCA jack that supports both PAL and NTSC video output.

• Audio Output: It has 3.5mm audio output jack. This audio jack is used for
providing audio output to old television along with RCA jack for video.

• GPIO Pins: It has a number of general purpose input/output pins. These
pins are used to connect other electronic components. For example, you
can connect it to the temperature sensor to transmit digital data.

Raspberry Pi-Components
• Display Serial Interface (DSI): DSI interface are used to connect an LCD panel to Raspberry PI.

• Cameral Serial Interface(CSI): CSI interface are used to connect a camera module to Raspberry PI.

• SD Card slot: Raspberry does not have built in OS and storage. Plug in an SD card loaded with
Linux to SD card slot.

• Power Input: Raspberry has a micro USP connector for power input.

• Memory: The raspberry pi model A board is designed with 256MB of SDRAM and model B is
designed with 51MB.Raspberry pi is a small size PC compare with other PCs. The normal PCs RAM
memory is available in gigabytes. But in raspberry pi board, the RAM memory is available more
than 256MB or 512MB

• Status LEDs: Raspberry has 5 status LEDs.

Status LED Function

ACT SD card Access

PWR 3.3V power is present

FDX Full duplex LAN Connected

LNK Link/Network Activity

100 100 Mbit LAN connected

Programming Raspberry Pi with Python
• Raspberry Pi

• The Raspberry Pi is a single-board computer developed by
the Raspberry Pi Foundation, a UK-based charity organization.
Originally designed to provide young people with an affordable
computing option to learn how to program, it has developed a
massive following in the maker and DIY communities because of its
compact size, full Linux environment, and general-purpose input–
output (GPIO) pins.

• With all the features and capabilities that are packed into this small
board, there’s no shortage of projects and use cases for the Raspberry
Pi.

https://en.wikipedia.org/wiki/Single-board_computer
https://www.raspberrypi.org/about/

Programming Raspberry Pi with Python
• Some example projects include the following:

• Line-following robot

• Home weather station

• Retro gaming machine

• Real-time object detection camera

• Minecraft server

• Button-controlled music box

• Media center

• Remote experiments on the International Space Station

• If you can think of a project that would benefit from having a credit card–
sized computer attached to it, then someone has probably used a
Raspberry Pi to do it. The Raspberry Pi is a fantastic way to bring your
Python project ideas to life.

https://projects.raspberrypi.org/en/projects/rpi-python-line-following
https://projects.raspberrypi.org/en/projects/build-your-own-weather-station
https://retropie.org.uk/
https://maker.pro/raspberry-pi/projects/how-to-use-raspberry-pi-and-tensorflow-for-real-time-object-detection
https://www.makeuseof.com/tag/setup-minecraft-server-raspberry-pi/
https://projects.raspberrypi.org/en/projects/gpio-music-box
https://mediaexperience.com/raspberry-pi-xbmc-with-raspbmc/
https://www.raspberrypi.org/education/programmes/astro-pi/

Raspberry Pi Board Overview

• The Raspberry Pi comes in a variety of form factors for different use
cases. In this tutorial, you’ll be looking at the most recent version,
the Raspberry Pi 4.

• Below is the board layout of the Raspberry Pi 4. While this layout is
slightly different from previous models of the Raspberry Pi, most of
the connections are the same. The setup described in the next
section should be the same for both a Raspberry Pi 3 and a Raspberry
Pi 4:

https://www.raspberrypi.org/products/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/

Raspberry Pi Board Overview

Raspberry Pi Board Overview

• The Raspberry Pi 4 board contains the following components:

• General-purpose input–output pins: These pins are used to connect
the Raspberry Pi to electronic components.

• Ethernet port: This port connects the Raspberry Pi to a wired
network. The Raspberry Pi also has Wi-Fi and Bluetooth built in for
wireless connections.

• Two USB 3.0 and two USB 2.0 ports: These USB ports are used to
connect peripherals like a keyboard or mouse. The two black ports
are USB 2.0 and the two blue ports are USB 3.0.

• AV jack: This AV jack allows you to connect speakers or headphones
to the Raspberry Pi.

Raspberry Pi Board Overview

• Camera Module port: This port is used to connect the official Raspberry Pi
Camera Module, which enables the Raspberry Pi to capture images.

• HDMI ports: These HDMI ports connect the Raspberry Pi to external
monitors. The Raspberry Pi 4 features two micro HDMI ports, allowing it to
drive two separate monitors at the same time.

• USB power port: This USB port powers the Raspberry Pi. The Raspberry Pi
4 has a USB Type-C port, while older versions of the Pi have a micro-
USB port.

• External display port: This port is used to connect the official seven-inch
Raspberry Pi touch display for touch-based input on the Raspberry Pi.

• microSD card slot (underside of the board): This card slot is for the
microSD card that contains the Raspberry Pi operating system and files.

https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/camera-module-v2/
https://www.raspberrypi.org/products/raspberry-pi-touch-display/

Raspberry Pi vs Arduino
• People often wonder what the difference is between a Raspberry Pi and an

Arduino. The Arduino is another device that is widely used in physical computing.
While there is some overlap in the capabilities of the Arduino and the Raspberry
Pi, there are some distinct differences.

• The Arduino platform provides a hardware and software interface for
programming microcontrollers. A microcontroller is an integrated circuit that
allows you to read input from and send output to electronic components.
Arduino boards generally have limited memory, so they’re often used to
repeatedly run a single program that interacts with electronics.

• The Raspberry Pi is a general-purpose, Linux-based computer. It has a full
operating system with a GUI interface that is capable of running many different
programs at the same time.

• The Raspberry Pi comes with a variety of software preinstalled, including a web
browser, an office suite, a terminal, and even Minecraft. The Raspberry Pi also
has built-in Wi-Fi and Bluetooth to connect to the Internet and external
peripherals.

• For running Python, the Raspberry Pi is often the better choice, as you get a full-
fledged Python installation out of the box without any configuration.

https://realpython.com/arduino-python/
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/Integrated_circuit

Setting Up the Raspberry Pi
• Unlike the Arduino, which requires only a USB cable and a computer to set up,

the Raspberry Pi has more hardware requirements to get up and running. After
the initial setup, though, some of these peripherals will no longer be required.

• Required Hardware

• The following hardware is required for the initial setup of your Raspberry Pi. If
you end up connecting to your Raspberry Pi over SSH, then some of the
hardware below will not be needed after the initial setup.

• Monitor

• You’ll need a monitor during the initial setup and configuration of the operating
system. If you’ll be using SSH to connect to your Raspberry Pi, then you won’t
need the monitor after setup. Make sure your monitor has an HDMI input.

• microSD Card

• Raspberry Pi uses a microSD card to store the operating system and files. If you
buy a Raspberry Pi kit, then it will contain a preformatted microSD card for you to
use. If you buy a microSD card separately, then you’ll need to format it yourself.
Look for a microSD card with at least 16GB of capacity.

https://www.raspberrypi.org/products/raspberry-pi-4-desktop-kit/
https://realpython.com/python-raspberry-pi/

Setting Up the Raspberry Pi
• Keyboard and Mouse

• A USB keyboard and mouse are required during the initial setup of the Raspberry
Pi. Once the setup is complete, you can switch to using Bluetooth versions of
these peripherals if you prefer. Later in this tutorial, you’ll see how to connect to
the Raspberry Pi over SSH. If you choose to connect this way, then a physical
keyboard and mouse are not required after the initial setup.

• HDMI Cables

• You’ll need an HDMI cable to connect the Raspberry Pi to a monitor. Different
Raspberry Pi models have different HDMI cable requirements:

Raspberry Pi 4

Raspberry Pi

3/2/1

Raspberry Pi

Zero

micro HDMI HDMI mini HDMI

micro HDMI to

HDMI

HDMI to HDMI mini HDMI to

HDMI

Depending on your model, you may need to purchase a special HDMI cable or adapter.

Setting Up the Raspberry Pi

• Power Supply

• The Raspberry Pi uses a USB connection to power the board. Again,
different Raspberry Pi models have different USB connection and
power requirements.

• Below are the connection and power requirements for the different
models:

Raspberry Pi 4 Raspberry Pi 3/2/1/Zero

USB-C Micro-USB

At least 3.0 amps At least 2.5 amps

To avoid any confusion when selecting a power supply, it’s recommended that you use the official power
supply for your Raspberry Pi 4 or other model.

https://www.raspberrypi.org/products/type-c-power-supply/
https://www.raspberrypi.org/products/raspberry-pi-universal-power-supply/

Setting Up the Raspberry Pi
• Optional Hardware

• You can use a whole range of additional hardware with the Raspberry Pi to
extend its capabilities. The hardware items listed below are not required to
use your Raspberry Pi but would be useful to have on hand.

• Case

• It’s nice to have a case for your Raspberry Pi to keep its components from
being damaged during normal use. When selecting a case, make sure that
you purchase the correct type for your model of the Raspberry Pi.

• Speakers

• If you want to play music or sound from your Raspberry Pi, then you’ll need
speakers. These can be any standard speakers that have a 3.5 mm jack. You
can connect the speakers to the Raspberry Pi using the AV jack on the side
of the board.

https://realpython.com/playing-and-recording-sound-python/
https://realpython.com/python-raspberry-pi/

Setting Up the Raspberry Pi
• Heat Sinks (Recommended)

• The Raspberry Pi can do a lot of computing for a little board. This is one of
the reasons it’s so awesome! But this does mean that it can get a little hot
sometimes. It’s recommended that you purchase a set of heatsinks to
prevent the Raspberry Pi from throttling the CPU when it gets too hot.

• Software

• The operating system for the Raspberry Pi is stored on a microSD card. If
your card did not come from an official Raspberry Pi kit, then you’ll need to
install the operating system on it.

• There are multiple ways to set up the operating system on your Raspberry
Pi. You can find out more about the different installation options on
the Raspberry Pi website.

• In this section, you’ll look at two ways to install Raspbian, the officially
supported Raspberry Pi operating system, which is based on Debian Linux.

https://realpython.com/asins/B07VV99H3T/
https://en.wikipedia.org/wiki/Dynamic_frequency_scaling
https://www.raspberrypi.org/documentation/installation/installing-images/README.md

Setting Up the Raspberry Pi
• Raspberry Pi Imager

(Recommended)

• The Raspberry Pi foundation
recommends that you use
the Raspberry Pi Imager for
the initial setup of your SD
card. You can download the
imager from the Raspberry Pi
Downloads page. Once on this
page, download the
appropriate version for your
operating system:

https://www.raspberrypi.org/downloads/
https://www.raspberrypi.org/downloads/

Setting Up the Raspberry Pi

• After you’ve downloaded
the Raspberry Pi Imager,
start the application. You’ll
see a screen that allows
you to select the
operating system that you
want to install along with
the SD card you would like
to format:

You’ll be given two options when first loading the application: Choose OS and Choose SD Card. Select Choose OS first.

Note: There’s a chance that Windows may prevent the Raspberry Pi Imager from starting because it’s an unrecognized
application. If you receive a pop-up that says Windows protected your PC, then you can still run the application by

clicking More info and selecting Run anyway.

Setting Up the Raspberry Pi

• With the application running, click the Choose OS button and choose
the first Raspbian option:

Setting Up the Raspberry Pi
• After selecting the

Raspbian operating
system, you need to
select the SD card
you’re going to use.
Make sure your microSD
card is inserted into
your computer and
click Choose SD Card,
then select the SD card
from the menu:

For Detail Study of Raspberry pi installation : go through the following link

https://projects.raspberrypi.org/en/projects/raspberry-pi-getting-started

Linux on Raspberry Pi
• Terminal

• The terminal (or 'command-line') on a computer allows a user a great
deal of control over their system. Users of Windows may already have
come across command Prompt or Powershell, while mac OS users
may be familiar with Terminal. All of these tools allow a user to
directly manipulate their system through the use of commands. These
commands can be chained together and/or combined together into
complex scripts that can potentially complete tasks more efficiently
than much larger traditional software packages

https://www.raspberrypi.org/documentation/computers/using_linux.html

Linux on Raspberry Pi
• On the Raspberry Pi OS, the default terminal application is called

LXTerminal. This is known as a 'terminal emulator', this means that it
emulates the old style video terminals — from before Windowing systems
were developed — inside a graphical environment. The application can be
found on the Raspberry Pi desktop, and when started will look something
like this:

• In the terminal window you should be able to see the following prompt:

 pi@raspberrypi ~$

• This shows your username and the hostname of the Pi. Here the username
is pi and the hostname is raspberrypi.

Linux on Raspberry Pi
• Navigating and

browsing your Pi

• One of the key
aspects of using a
terminal is being able
to navigate your file
system. Go ahead and
type ls -la into the
Terminal window, and
then hit the RETURN
key. You should see
something similar to:

Linux on Raspberry Pi
• The ls command lists the contents of the directory that you are

currently in (your present working directory).

• The -la component of the command is what’s known as a 'flag'. Flags
modify the command that’s being run.

• In this case the l displays the contents of the directory in a list,
showing data such as their sizes and when they were last edited, and
the a displays all files, including those beginning with a. known as
'dotfiles'. Dotfiles usually act as configuration files for software and as
they are written in text, they can be modified by simply editing them.

Linux on Raspberry Pi

• In order to navigate to other directories, the change directory
command,cd can be used. You can specify the directory that you want
to go to by either the 'absolute' or the 'relative' path.

• So if you wanted to navigate to the phython_games directory, you
could either do cd /home/pi/phython_games or just cd
python_games (if you are currently in home/pi).

• There are some special cases that may be useful: ~ acts as an alias for
your home directory, so ~/python_games is the same as
/hoem/pi/python_games; . and .. are aliases for the current directory
and the parent directory respectively, e.g. if you were in
home/pi/python_games, cd.. would take you to /hoem/pi.

Linux on Raspberry Pi
• History and auto-complete

• Rather than type every command, the terminal allows you to scroll
through previous commands that you’ve run by pressing the up
or down keys on your keyboard.

• If you are writing the name of a file or directory as part of a command
then pressing tab will attempt to auto-complete the name of what
you are typing. For example, if you have a file in a directory
called aLongFileName then pressing tab after typing a will allow you
to choose from all file and directory names beginning with a in the
current directory, allowing you to choose aLongFileName.

Linux on Raspberry Pi

• The Sudo command

• Some commands that make permanent changes to the state of your
system require you to have root privileges to run. The
command sudo temporarily gives your account (if you’re not already
logged in as root) the ability to run these commands, provided your
user name is in a list of users ('sudoers'). When you append sudo to
the start of a command and press enter, the command following
sudo will be run using root privileges. Be very careful: commands
requiring root privileges can irreparably damage your system! Note
that on some systems you will be prompted to enter your password
when you run a command with sudo.

Linux on Raspberry Pi
• Installing software using apt

• The apt command is used to install software in Raspberry Pi OS. This
is the 'package manager' that is included with any Debian-based Linux
distributions, including Raspberry Pi OS. It allows you to install and
manage new software packages on your Raspberry Pi.

• In order to install a new package, you would type sudo apt install
<package-name>, where <package-name> is the package that you
want to install.

• Running sudo apt update will update a list of software packages that
are available on your system. If a new version of a package is
available, then sudo apt full-upgrade will update any old packages to
the new version.

• Finally, sudo apt remove <package-name> removes or uninstalls a
package from your system.

https://www.raspberrypi.org/documentation/computers/os.html

Linux on Raspberry Pi
• Other useful commands

• There are a few other commands that you may find useful, these are listed below:

• cp makes a copy of a file and places it at the specified location (essentially doing a
'copy-paste'), for example - cp file_a /home/other_user/ would copy the
file file_a from your home directory to that of the user other_user (assuming you
have permission to copy it there). Note that if the target is a folder, the filename
will remain the same, but if the target is a filename, it will give the file the new
name.

• mv moves a file and places it at the specified location (so where cp performs a
'copy-paste', mv performs a 'cut-paste'). The usage is similar to cp, so mv file_a
/home/other_user/ would move the file file_a from your home directory to that
of the specified user. mv is also used to rename a file, i.e. move it to a new
location, e.g. mv hello.txt story.txt.

• rm removes the specified file (or directory when used with -r). Warning: Files
deleted in this way are generally not restorable.

• mkdir: This makes a new directory, e.g. mkdir new_dir would create the
directory new_dir in the present working directory.

• cat lists the contents of files, e.g. cat some_file will display the contents
of some_file.

Linux on Raspberry Pi
• Finding out about a command

• To find out more information about a particular command then you
can run the man followed by the command you want to know more
about (e.g. man ls). The man-page (or manual page) for that
command will be displayed, including information about the flags for
that program and what effect they have. Some man-pages will give
example usage.

Linux on Raspberry Pi
• The Linux File System

• It is important to have a basic understanding of the fundamentals of the Linux file
system: where your files are kept, where software is installed, where the danger zones
are, and so on.

• Home

• When you log into a Pi and open a terminal window, or you boot to the command line
instead of the graphical user interface, you start in your home folder; this is located
at /home/pi, assuming your username is pi.

• This is where the user’s own files are kept. The contents of the user’s desktop is in a
directory here called Desktop, along with other files and folders.

• To navigate to your home folder on the command line, simply type cd and press Enter.
This is the equivalent of typing cd /home/pi, where pi is your username. You can also use
the tilde key (~), for example cd ~, which can be used to relatively link back to your home
folder. For instance, cd ~/Desktop/ is the same as cd /home/pi/Desktop.

• Navigate to /home/ and run ls, and you’ll see the home folders of each of the users on
the system.

• Note that if logged in as the root user, typing cd or cd ~ will take you to the root user’s
home directory; unlike normal users, this is located at /root/ not /home/root/.

https://www.raspberrypi.org/documentation/computers/using_linux.html

Linux on Raspberry Pi
• Linux Commands

Linux Command Use

ls

The ls command lists the content of the current directory (or one that is specified). It

can be used with the -l flag to display additional information (permissions, owner,

group, size, date and timestamp of last edit) about each file and directory in a list

format. The -a flag allows you to view files beginning with . (i.e. dotfiles).

cd
Using cd changes the current directory to the one specified. You can use relative

(i.e. cd directoryA) or absolute (i.e. cd /home/pi/directoryA) paths.

pwd
The pwd command displays the name of the present working directory: on a Raspberry

Pi, entering pwd will output something like /home/pi.

mkdir
You can use mkdir to create a new directory, e.g. mkdir newDir would create the

directory newDir in the present working directory.

rmdir
To remove empty directories, use rmdir. So, for example, rmdir oldDir will remove the

directory oldDir only if it is empty.

rm

The command rmremoves the specified file (or recursively from a directory when used

with -r). Be careful with this command: files deleted in this way are mostly gone for

good!

Linux on Raspberry Pi
• Linux Commands

Linux Command Use

cp

Using cp makes a copy of a file and places it at the specified location (this is similar to copying

and pasting). For example, cp ~/fileA /home/otherUser/ would copy the file fileA from your home

directory to that of the user otherUser (assuming you have permission to copy it there). This

command can either take FILE FILE (cp fileA fileB), FILE DIR (cp fileA /directoryB/) or -r DIR

DIR (which recursively copies the contents of directories) as arguments.

mv

The mv command moves a file and places it at the specified location (so where cp performs a

'copy-paste', mv performs a 'cut-paste'). The usage is similar to cp. So mv ~/fileA

/home/otherUser/ would move the file fileA from your home directory to that of the user otherUser.

This command can either take FILE FILE (mv fileA fileB), FILE DIR (mv fileA /directoryB/) or DIR

DIR (mv /directoryB /directoryC) as arguments. This command is also useful as a method to

rename files and directories after they’ve been created.

touch
The command touch sets the last modified time-stamp of the specified file(s) or creates it if it does

not already exist.

cat

You can use cat to list the contents of file(s), e.g. cat thisFile will display the contents of thisFile.

Can be used to list the contents of multiple files, i.e. cat *.txt will list the contents of all .txt files in

the current directory.

head
The head command displays the beginning of a file. Can be used with -n to specify the number of

lines to show (by default ten), or with -c to specify the number of bytes.

tail
The opposite of head, tail displays the end of a file. The starting point in the file can be specified

either through -b for 512 byte blocks, -c for bytes, or -n for number of lines.

Linux on Raspberry Pi
• Linux Commands

Linux Command Use

chmod

You would normally use chmod to change the permissions for a file. The chmod command can

use symbols u (user that owns the file), g (the files group) , and o (other users) and the

permissions r (read), w (write), and x (execute). Using chmod u+x filename will add execute

permission for the owner of the file.

chown

The chown command changes the user and/or group that owns a file. It normally needs to be run

as root using sudo e.g. sudo chown pi:root filename will change the owner to pi and the group to

root.

ssh
ssh denotes the secure shell. Connect to another computer using an encrypted network

connection. For more details see SSH (secure shell)

scp
The scp command copies a file from one computer to another using ssh. For more details

see SCP (secure copy)

sudo
The sudo command enables you to run a command as a superuser, or another user. Use sudo -

s for a superuser shell. For more details see Root user / sudo

dd

The dd command copies a file converting the file as specified. It is often used to copy an entire

disk to a single file or back again. So, for example, dd if=/dev/sdd of=backup.img will create a

backup image from an SD card or USB disk drive at /dev/sdd. Make sure to use the correct drive

when copying an image to the SD card as it can overwrite the entire disk

https://www.raspberrypi.org/documentation/computers/remote-access.html
https://www.raspberrypi.org/documentation/computers/remote-access.html
https://www.raspberrypi.org/documentation/computers/using_linux.html

Linux on Raspberry Pi
• Linux Commands

Linux Command Use

df

Use df to display the disk space available and used on the mounted filesystems. Use df -h to see

the output in a human-readable format using M for MBs rather than showing number of bytes.

unzip
The unzip command extracts the files from a compressed zip file.

tar

Use tar to store or extract files from a tape archive file. It can also reduce the space required by

compressing the file similar to a zip file.

To create a compressed file, use tar -cvzf filename.tar.gz directory/ To extract the contents of a

file, use tar -xvzf filename.tar.gz

pipes

A pipe allows the output from one command to be used as the input for another command. The

pipe symbol is a vertical line |. For example, to only show the first ten entries of the ls command it

can be piped through the head command ls | head

tree
Use the tree command to show a directory and all subdirectories and files indented as a tree

structure.

&
Run a command in the background with &, freeing up the shell for future commands.

Linux on Raspberry Pi
• Linux Commands

Linux Command Use

wget

Download a file from the web directly to the computer with wget. So wget

https://datasheets.raspberrypi.org/rpi4/raspberry-pi-4-datasheet.pdf will download the Raspberry

Pi 4 datasheet and save it as raspberry-pi-4-datasheet.pdf.

curl
Use curl to download or upload a file to/from a server. By default, it will output the file contents of

the file to the screen.

man
Show the manual page for a file with man. To find out more, run man man to view the manual

page of the man command.
Search Commands

Linux on Raspberry Pi
• Search Commands

Search

Command

Use

grep

Use grep to search inside files for certain search patterns. For example, grep

"search" *.txt will look in all the files in the current directory ending with .txt for

the string search.

The grep command supports regular expressions which allows special letter

combinations to be included in the search.

awk
awk is a programming language useful for searching and manipulating text

files.

find
The find command searches a directory and subdirectories for files matching

certain patterns.

whereis
Use whereis to find the location of a command. It looks through standard

program locations until it finds the requested command.

Linux on Raspberry Pi
• Networking Commands
Networking

Command

Use

ping

The ping utility is usually used to check if communication can be made with another

host. It can be used with default settings by just specifying a hostname (e.g. ping

raspberrypi.org) or an IP address (e.g. ping 8.8.8.8). It can specify the number of

packets to send with the -c flag..

nmap

nmap is a network exploration and scanning tool. It can return port and OS information

about a host or a range of hosts. Running just nmap will display the options available

as well as example usage.

hostname

The hostname command displays the current hostname of the system. A privileged

(super) user can set the hostname to a new one by supplying it as an argument

(e.g. hostname new-host).

ipconfig

Use ifconfig to display the network configuration details for the interfaces on the current

system when run without any arguments (i.e. ifconfig). By supplying the command with

the name of an interface (e.g. eth0 or lo) you can then alter the configuration: check

the manual page for more details.

Linux on Raspberry Pi
• Text Editors on Desktop

• Text Editor

• When using Raspberry Pi OS Desktop, in the accessories menu there is an
option to run a Text Editor. This is a simple editor which opens in a window
like a normal application. It allows use of the mouse and keyboard, and has
tabs and syntax highlighting.

• You can use keyboard shortcuts, such as Ctrl + S to save a file and Ctrl + X to
exit.

• Thonny

• Thonny is a Python REPL and IDE, so you can write and edit Python code in
a window and run it directly from the editor. Thonny has independent
windows, and syntax highlighting, and uses Python 3.

• Geany

• A fast and lightweight IDE, supporting many different file types, including
C/C++ and Python. It is installed by default on Raspberry Pi OS.

https://thonny.org/

Linux on Raspberry Pi
• Text Editors in the Terminal

• Nano

• GNU Nano is at the easy-to-use end of command-line editors. It’s installed by default, so use nano
somefile.txt to edit a file, and keyboard shortcuts like Ctrl + O to save and Ctrl + X to exit.

• Vi

• Vi is a very old (c. 1976) command-line editor, which is available on most UNIX systems and is pre-
installed on Raspberry Pi OS. It’s succeeded by Vim (Vi Improved), which requires installation.

• Unlike most editors, Vi and Vim have a number of different modes. When you open Vi with vi
somefile.txt, you start in command mode which doesn’t directly permit text entry. Press i to
switch to insert mode in order to edit the file, and type away. To save the file you must return to
command mode, so press the Escape key and enter :w (followed by Enter), which is the command
to write the file to disk.

• To search for the word 'raspberry' in a file, make sure you’re in command mode (press Escape),
then type /raspberry followed by n and N to flick forwards/backwards through the results.

• To save and exit, enter the command :wq. To exit without saving, enter the command :q!.

• Depending on your keyboard configuration, you may find your cursor keys don’t work. In this
case, you can use the H-J-K-L keys (which move left, down, up, and right respectively) to navigate
the file in command mode.

Linux on Raspberry Pi
• Vim

• Vim is an extension of Vi and works in much the same way, with a number
of improvements. Only Vi is installed by default so to get the full features of
Vim, install it with APT:

• You can edit a file in Vim with vim somefile.txt.

• Emacs

• Emacs is a GNU command-line text editor; it’s powerful, extensible, and
customisable. You can install it with APT:

• You can use keyboard combination commands, such as Ctrl + X Ctrl + S to
save and Ctrl + X Ctrl + C to close.

sudo apt install vim

sudo apt install emacs

Linux on Raspberry Pi
• Linux Users

• User management in Raspberry Pi OS is done on the command line. The default user
is pi, and the password is raspberry. You can add users and change each user’s password.

• Changing your Password

• Once you’re logged in as the pi user, it is highly advisable to use the passwd command to
change the default password to improve your Pi’s security.

• Enter passwd on the command line and press Enter. You’ll be prompted to enter your
current password to authenticate, and then asked for a new password. Press Enter on
completion and you’ll be asked to confirm it. Note that no characters will be displayed
while entering your password. Once you’ve correctly confirmed your password, you’ll be
shown a success message (passwd: password updated successfully), and the new
password will apply immediately.

• If your user has sudo permissions, you can change another user’s password
with passwd followed by the user’s username. For example, sudo passwd bob will allow
you to set the user bob's password, and then some additional optional values for the
user such as their name. Just press Enter to skip each of these options.

• Remove a User’s Password
• You can remove the password for the user bob with sudo passwd bob -d. Without a

password the user will not be able to login to a Terminal.

Linux on Raspberry Pi
• Linux Users

• Creating a New User

• You can create additional users on your Raspberry Pi OS installation with
the adduser command.

• Enter sudo adduser bob and you’ll be prompted for a password for the new user bob.
Leave this blank if you don’t want a password.

• Your Home Folder

• When you create a new user, they will have a home folder in /home/. The pi user’s home
folder is at /home/pi/.

• The skel Command

• Upon creating a new user, the contents of /etc/skel/ will be copied to the new user’s
home folder. You can add or modify dot-files such as the .bashrc in /etc/skel/ to your
requirements, and this version will be applied to new users.

• Deleting a User

• You can delete a user on your system with the command userdel. Apply the -r flag to
remove their home folder too:

• sudo userdel -r bob

Linux on Raspberry Pi
• The `.bashrc ` File

• In your home folder you will find a hidden file called .bashrc which
contains some user configuration options. You can edit this file to suit
your needs. Changes made in this file will be actioned the next time a
terminal is opened, since that is when the .bashrc file is read.

• Shell Scripts

• Commands can be combined together in a file which can then be
executed. As an example, copy the following into your favourite text
editor: #!/usr/bin/bash

while :

do

Echo Raspberry Pi!

done

Save this with the name fun-script.

Linux on Raspberry Pi

• Before you can run it you must first make it executable; this can be
done by using the change mode command chmod. Each file and
directory has its own set of permissions that dictate what a user can
and can’t do to it. In this case, by running the command chmod +x
fun-script, the file fun-script will now be executable.

• You can then run it by typing ./fun-script (assuming that it’s in your
current directory).

• This script infinitely loops and prints Raspberry Pi!; to stop it,
press Ctrl + C. This kills any command that’s currently being run in the
terminal.

Raspberry PI Interfaces
• It supports SPI, serial and I2C interfaces for data transfer.

• Serial : Serial Interface on Raspberry has receive(Rx) and Transmit(Tx) pins
for communication with serial peripherals.

• SPI: Serial Peripheral Interface (SPI) is a synchronous serial data protocol
used for communicating with one or more peripheral devices. In an SPI
connection, there is one master device and one or more peripheral
devices. There are 5 pins Raspberry for SPI interface.
• MISO(Master In Slave Out): Master line for sending data to the peripherals.

• MOSI(Master Out Slave In): Slave Line for sending data to the master.

• SCK(Serial Clock): Clock generated by master to synchronize data transmission.

• CE0(Chip Enable 0): To enable or disable devices.

• o CE1(Chip Enable 1): To enable or disable devices.

➢ I2C: I2C Interface pins are used to connect hardware modules.

 I2C interface allows synchronous data transfer with two pins: SDA(data line) and
SCL (Clock Line)

Raspberry PI Interfaces
• Features of Raspberry PPI

• 1. Where the system processing is huge. They can process high end
programs for applications like Weather Station, Cloud server, gaming
console etc. With 1.2GHz clock speed and 1 GB RAM RASPBERRY PI
can perform all those advanced functions.

• 2. RASPBERRY PI 3 has wireless LAN and Bluetooth facility by which
you can setup WIFI HOTSPOT for internet connectivity.

• 3. RASPBERRY PI had dedicated port for connecting touch LCD display
which is a feature that completely omits the need of monitor.

• 4. RASPBERRY PI also has dedicated camera port so one can connect
camera without any hassle to the PI board.

• 5. RASPBERRY PI also has PWM outputs for application use.

• 6. It supports HD steaming

Raspberry PI Interfaces

• Applications

• Hobby projects.

• Low cost PC/tablet/laptop

• IoT applications

• Media center

• Robotics

• Industrial/Home automation

• Server/cloud server

• Print server

• Security monitoring

• Web camera

• Gaming

• Wireless access point

Programming Raspberry Pi with Python

• Separate PPt

• https://learn.sparkfun.com/tutorials/python-programming-tutorial-
getting-started-with-the-raspberry-pi/all

Other IoT Platforms
• The Internet of Things

concept implies the
creation of a distributed
network consisting of
numerous physical
objects equipped with
embedded software,
sensors and connectivity
options that collect and
share data with each
other and with the central
platform via the internet.

IoT Technology Overview
• IoT system architecture consists of four layers:

• Sensors and actuators collect data directly from physical objects
(devices, equipment, machines, vehicles, home appliances, people,
animals, etc.).

• Gateways and data acquisition systems convert gathered data from
the analog to the digital format.

• Edge computing ensures there’s immediate preliminary data analytics
right on devices.

• Data centers or cloud services provide deep data analysis, processing
and storage.

IoT Technology Overview
Examples of IoT systems:

• Smart home systems (security devices, intelligent lighting,
conditioning, heating, connected home appliances)

• Wearable health devices both for self-tracking of health conditions
(pulse oximeters, glucometers) and for vital sign monitoring in clinics

• Logistics tracking systems (GPS trackers, fuel level sensors, alert
systems to monitor driver behavior)

• Autonomous vehicles (farming equipment, warehouse autonomous
robots, passenger buses)

• Smart factory equipment (robotics, predictive maintenance solutions)

IoT Platform
• What Is an IoT Platform?

• An IoT platform serves as a mediator between the world of physical objects and
the world of actionable insights. Combining numerous tools and functionalities,
Internet of Things platforms enable you to build unique hardware and software
products for collecting, storing, analyzing and managing the plethora of data
generated by your connected devices and assets.

• Types of Internet of Things Platforms

• IoT products consist of numerous components:

• Hardware

• Software

• Communication technologies

• Central repository (cloud or local)

• End-user applications

Types of IoT platforms
• To cover each aspect while developing an IoT product, there are

several types of IoT platforms.

• Hardware development platforms provide physical development boards
for creating IoT devices, including microcontrollers, microprocessors,
Systems on Chip (SoC), Systems on Module (SoM).

• App development platforms serve as an integrated development
environment (IDE) with tools and features for coding applications.

• Connectivity platforms provide communication technologies to connect
physical objects with the data center (on-premise or cloud) and transmit
information between them. Among popular connectivity protocols and
standards for the Internet of Things are MQTT, DDS, AMQP, Bluetooth,
ZigBee, WiFi, Cellular, LoRaWAN and more.

• Analytics platforms use intelligent algorithms to analyze collected
information and transform it into actionable insights for customers.

• End-to-end IoT platforms cover all aspects of IoT products, from
development and connectivity to data management and visualization.

Most Popular IoT Platforms in 2021
• To make it easier for you to decide which IoT platform to choose for your project,

we’ve compiled a list of the most popular Internet of Things platforms for this
year, with detailed descriptions of each one.

• Google Cloud IoT

• Cisco IoT Cloud Connect

• Salesforce IoT Cloud

• IRI Voracity

• Particle

• IBM Watson IoT

• ThingWorx

• Amazon AWS IoT Core

• Microsoft Azure IoT Hub

• Oracle IoT

IoT Platforms
1. Google Cloud IoT

• Google launched its platform for Internet of Things development on the
basis of its end-to-end Google Cloud Platform. Currently, it’s one of the
world’s top Internet of Things platforms. Google Cloud IoT is the
integration of various services that add value to connected solutions.

• Cloud IoT Core allows you to capture and handle device data. A device
manager component is used to register devices with the service, and
monitor and configure them. MQTT and HTTP protocol bridges are used
for device connection and communication with the Google Cloud
Platform.

• Cloud Pub/Sub performs data ingestion and message routing for further
data processing.

• Google BigQuery enables secure real-time data analytics.

• AI Platform applies machine learning features.

• Google Data Studio visualizes data by making reports and dashboards.

• Google Maps Platform helps visualize the location of connected assets.

• The platform automatically integrates with Internet of Things hardware
producers such as Intel and Microchip. It supports various operating
systems, including Debian Linux OS.

IoT Platforms

• Core features of Google Cloud IoT:

• AI and machine learning capabilities

• Real-time data analysis

• Strong data visualization

• Location tracking

• Core use cases:

• Predictive maintenance

• Real-time asset tracking

• Logistics and supply chain management

• Smart cities and buildings

IoT Platforms
2. Cisco Iot Cloud Platform

• Cisco IoT Cloud Connect is originally an offering for mobile operators. This mobility
cloud-based software suite for industrial and individual use cases is on the list of
the best Internet of Things cloud platforms. Cisco also provides reliable IoT
hardware, including switches, access points, routers, gateways and more.

• Take a look at some examples of powerful Cisco Internet of Things products and
solutions.

• Cisco IoT Control Center ensures impeccable cellular connectivity management,
allowing you to integrate all your IoT devices in one SaaS solution.

• Extended Enterprise Solution allows for the development of IoT business
applications at the edge and ensures rapid deployment and centralized network
management.

• Edge Intelligence simplifies data processing by allocating data flows either to local
or multi-cloud environments.

• Industrial Asset Vision utilizes sensors to monitor your assets continuously and
deliver data for better decision-making.

• Cisco IoT Threat Defense protects sensible data and devices against cyberattacks,
providing secure remote access, segmentation, visibility and analysis, and other
security services.

IoT Platforms
• Core features of Cisco IoT Cloud Connect:

• Powerful industrial solutions

• High-level security

• Edge computing

• Centralized connectivity and data management

• Core use cases:

• Connected cars

• Fleet management

• Home security and automation

• Payment and POS solutions

• Predictive maintenance

• Industrial networking

• Smart meters

• Healthcare

IoT Platforms

3. Salesforce IoT Cloud

• Salesforce specializes in customer relations management
and masterfully enhances this segment with the help of
IoT solutions.

• The Salesforce IoT Cloud platform gathers valuable
information from connected devices to deliver
personalized experiences to and build stronger
relationships with your customers. It works in tandem with
Salesforce CRM: data from connected assets is delivered
directly to the CRM system where context-based actions
are initiated immediately.

• For example, if sensors detect an error in windmill
performance, it is instantly reflected in the CRM
dashboard and the system can either adjust parameters
automatically or create a service ticket.

IoT Platforms

• Core features of Salesforce IoT Cloud:

• Full integration of customers, products and CRM

• No need for programming skills to create rules, conditions and events due to a
simple point-and-click UI

• Compatibility with third-party websites, services and other products

• A proactive approach to customer issues and needs

• Core use cases:

• Government administration

• Machinery

• Financial services

• Marketing and advertising

• Chemicals

• By using Salesforce IoT Cloud, businesses get a holistic view of customer data,
improve customer experience and increase sales.

IoT Platforms

4. IRI Voracity

• If you need an all-in-one data management platform
that enables IoT data control at every stage of your
business processes, IRI Voracity is the perfect fit.

• This platform uses two engines, IRI CoSort and
Hadoop, to process Big Data. It can discover, govern,
integrate, analyze, transform and migrate data from
various sources and in various formats such as Unix,
Linux or Windows file systems, ISAM, MongoDB, LDIF,
HIVE, JSON, S3, PostgreSQL, MQTT, Kafka and more.

IoT Platforms

• Core features of IRI Voracity:

• A Data Governance Portal enables data search and classification in silos. It
also provides encryption and anonymization to comply with data privacy
regulations.

• A Faster ETL and Analytic Alternative performs extraction and
transformation of large-sized data much faster than legacy ETL tools.

• A DB Ops Environment allows you to administer all your databases from one
place.

• Core use cases:

• Big Data analytics

• ETL modernization

• Data governance

IoT Platforms
5. Particle

• Particle offers an IoT edge-to-cloud platform for global connectivity and device management, as
well as hardware solutions, including development kits, production modules and asset tracking
devices. With Particle’s team of IoT experts, who provide end-to-end professional services, you
can develop your product from concept to production.

• Core features of the Particle platform:

• Integration with third-party services via REST API

• Firewall-protected cloud

• Capability to work with data from Google Cloud or Microsoft Azure

• No need for technical expertise in order to use the platform

• Core use cases:

• Real-time asset monitoring

• Live vehicle tracking

• Predictive maintenance

• Environmental monitoring

• Compliance monitoring

• Real-time order fulfillment

IoT Platforms
6. IBM Watson IoT

• An IoT platform built on IBM Cloud is a fully managed cloud service for device
management, flexible and scalable connectivity options, secure communications and
data lifecycle management. With IBM Watson IoT, you can collect insights from
automobiles, buildings, equipment, assets and things.

• Core features of IBM Watson IoT:

• Data ingestion from any source with the help of MQTT

• Direct access to the latest data in the Cloudant NoSQL DB solution

• Built-in monitoring dashboards to control your assets

• Analytics Service to process raw metrics

• The Cloud Object Storage solution for long-term data archiving

• Core use cases:

• Supply chain management

• Regulatory compliance

• Building management

• Energy consumption

• Shipping and logistics

IoT Platforms
7. ThingWorx

• The specialized Industrial Internet of Things (IIoT) platform ThingWorx is used in a variety of
manufacturing, service and engineering scenarios. The platform addresses common challenges
across industries, from remote monitoring and maintenance to workforce efficiency and asset
optimization.

• Core features of ThingWorx:

• Access to multiple data sources due to the extension of traditional industrial communications

• Powerful ready-to-use tools and applications to create and scale IIoT solutions quickly

• Real-time insights from complex industrial IoT data to proactively optimize operations and
prevent issues

• Total control over network devices, processes and systems

• Core Use Cases:

• Remote asset monitoring

• Remote maintenance/service

• Predictive maintenance and asset management

• Optimized equipment effectiveness

IoT Platforms
8. Amazon AWS IoT Core

• One of the leading players in the market, Amazon AWS IoT Core allows you to connect devices to
AWS cloud services without the need to manage servers. The platform provides reliability and
security for managing millions of devices.

• Core features of Amazon AWS IoT Core:

• A wide choice of connection protocols, including MQTT, MQTT over WSS, HTT and LoRaWAN

• Ability to use with other AWS services such as AWS Lambda, Amazon Kinesis, Amazon DynamoDB,
Amazon CloudWatch, Alexa Voice Service and more to build IoT applications

• A high level of security provided by end-to-end encryption throughout all points of connection,
automated configuration and authentication

• Machine learning capabilities

• A variety of services for edge computing

• Core use cases:

• Connected vehicles

• Connected homes

• Asset tracking

• Smart building

• Industrial IoT

IoT Platforms
9.Microsoft Azure IoT Hub

• With the open-source Azure IoT platform from Microsoft, you can quickly build scalable and secure
edge-to-cloud solutions. Utilizing ready-to-use tools, templates and services, you can develop
flexible applications according to your company’s needs.

• Core use cases:

• Automotive industry

• Discrete manufacturing

• Energy sector

• Healthcare

• Transportation

• Retail

Core features of Azure IoT Hub:

➢Data protection all the way from the edge to

the cloud

➢ The ability to operate even in offline mode

with Azure IoT Edge

➢ Seamless integration with other Azure

services

➢ Enhanced AI solutions

➢Continuous cloud-scale analytics

➢ Fully managed databases

➢Azure Industrial IoT solution

IoT Platforms
10. Oracle IoT

• The Internet of Things Cloud Service by Oracle is a managed Platform as a Service (PaaS) for
connecting your devices to the cloud.

• Core features of Oracle IoT:

• The ability to create applications and connect them to devices with JavaScript, Java, Android, iOS,
C POSIX and REST APIs

• Integration with enterprise applications, web services and other Oracle Cloud Services

• Real-time analysis tools to aggregate and filter incoming data streams

• Automatic synchronization of data streams with Oracle Business Intelligence Cloud Service

• Unique digital identity for each device to establish trust relationships among devices and
applications

• Core use cases:

• Connected logistics

• Predictive maintenance

• Smart manufacturing

• Workplace safety

https://www.sam-solutions.com/services/technologies/java/

IoT Platforms

• How to Choose the Best IoT Platform?

• There’s no definite answer to this question since there’s no one best
platform suitable for any digital project. The choice will always
depend on the specific requirements of your business.

• Large enterprises are more likely to turn to giants such as Amazon or
Microsoft. Their offerings are the best established, but also the most
expensive. Smaller companies may find more cost-efficient options
that will nevertheless perfectly meet their requirements.

• When choosing a provider, you should consider the technical
capabilities of a platform, its partner ecosystem, industry-specific
features and, in general, the provider’s reputation. All these
parameters should comply with your company strategy and budget.

Arduino
• Building IOT with Arduino Internet of Things

• The Internet of Things (IoT) is a scenario in which objects, animals or
people are provided with single identifiers and the capability to
automatically transfer and the capability to automatically transfer
data more to a network without requiring human-to-human or
human-to-computer communication.

Arduino

• Arduino Board:

• An Arduino is actually a microcontroller based kit.

• It is basically used in communications and in controlling or operating many
devices.

• Arduino UNO board is the most popular board in the Arduino board family.

• In addition, it is the best board to get started with electronics and coding.

• Some boards look a bit different from the one given below, but most
Arduino’s have majority of these components in common.

• It consists of two memories- Program memory and the data memory.

• The code is stored in the flash program memory, whereas the data is stored
in the data memory.

• Arduino Uno consists of 14 digital input/output pins (of which 6 can be
used as PWM outputs), 6 analog inputs, a 16 MHz crystal oscillator, a USB
connection, a power jack, an ICSP header, and a reset button

Arduino

Arduino

Arduino
▪ 1.Power USB Arduino board can be powered by using the USB cable from your computer. All you

need to do is connect the USB cable to the USB connection (1).

▪ 2.Power (Barrel Jack) Arduino boards can be powered directly from the AC mains power supply
by connecting it to the Barrel Jack (2).

▪ 3.Voltage Regulator The function of the voltage regulator is to control the voltage given to the
Arduino board and stabilize the DC voltages used by the processor and other elements.

▪ 4.Crystal Oscillator The crystal oscillator helps Arduino in dealing with time issues. How does
Arduino calculate time? The answer is, by using the crystal oscillator. The number printed on top
of the Arduino crystal is 16.000H9H. It tells us that the frequency is 16,000,000 Hertz or 16 MHz.

▪ 5,17.Arduino Reset You can reset your Arduino board, i.e., start your program from the beginning.
You can reset the UNO board in two ways. First, by using the reset button (17) on the board.
Second, you can connect an external reset button to the Arduino pin labelled RESET (5).
• 6,7,8,9.Pins (3.3, 5, GND, Vin)
• 3.3V (6) − Supply 3.3 output volt
• 5V (7) − Supply 5 output volt
• Most of the components used with Arduino board works fine with 3.3 volt and 5 volt.
• GND (8)(Ground) − There are several GND pins on the Arduino, any of which can be used to ground your

circuit.
• Vin (9) − This pin also can be used to power the Arduino board from an external power source, like AC mains

power supply.

Arduino

• 10.Analog pins The Arduino UNO board has six analog input pins A0
through A5. These pins can read the signal from an analog sensor like
the humidity sensor or temperature sensor and convert it into a
digital value that can be read by the microprocessor.

• 11.Main microcontroller Each Arduino board has its own
microcontroller (11). You can assume it as the brain of your board.
The main IC (integrated circuit) on the Arduino is slightly different
from board to board. The microcontrollers are usually of the ATMEL
Company. You must know what IC your board has before loading up a
new program from the Arduino IDE. This information is available on
the top of the IC. For more details about the IC construction and
functions, you can refer to the data sheet.

Arduino

• 12.ICSP pin Mostly, ICSP (12) is an AVR, a tiny programming header
for the Arduino consisting of MOSI, MISO, SCK, RESET, VCC, and GND.
It is often referred to as an SPI (Serial Peripheral Interface), which
could be considered as an "expansion" of the output. Actually, you
are slaving the output device to the mas

• 13.Power LED indicator This LED should light up when you plug your
Arduino into a power source to indicate that your board is powered
up correctly. If this light does not turn on, then there is something
wrong with the connection. ter of the SPI bus.

Arduino

• 14.TX and RX LEDs On your board, you will find two labels: TX
(transmit) and RX (receive). They appear in two places on the Arduino
UNO board. First, at the digital pins 0 and 1, to indicate the pins
responsible for serial communication. Second, the TX and RX led (13).
The TX led flashes with different speed while sending the serial data.
The speed of flashing depends on the baud rate used by the board.
RX flashes during the receiving process.

• 15.Digital I/O

• The Arduino UNO board has 14 digital I/O pins (15) (of which 6 provide PWM
(Pulse Width Modulation) output. These pins can be configured to work as
input digital pins to read logic values (0 or 1) or as digital output pins to drive
different modules like LEDs, relays, etc. The pins labeled “~” can be used to
generate PWM.

Arduino
• 16.AREF

• AREF stands for Analog Reference. It is sometimes, used to set an external
reference voltage (between 0 and 5 Volts) as the upper limit for the analog
input pins.

Program an Arduino

➢The most important advantage with Arduino is the programs can be
directly loaded to the device without requiring any hardware programmer
to burn the program.

➢This is done because of the presence of the 0.5KB of Bootloader which
allows the program to be burned into the circuit.

➢All we have to do is to download the Arduino software and writing the
code.

➢The Arduino tool window consists of the toolbar with the buttons like
verify, upload, new, open, save, serial monitor.

➢It also consists of a text editor to write the code, a message area which
displays the feedback like showing the errors, the text console which
displays the output and a series of menus like the File, Edit, Tools menu.

Arduino

• Steps to program an Arduino

• Programs written in Arduino are known as sketches. A basic sketch consists
of 3 parts
• 1. Declaration of Variables

• 2. Initialization: It is written in the setup () function.

• 3. Control code: It is written in the loop () function.

• The sketch is saved with .ino extension. Any operations like verifying,
opening a sketch, saving a sketch can be done using the buttons on the
toolbar or using the tool menu.

• The sketch should be stored in the sketchbook directory.

• Chose the proper board from the tools menu and the serial port numbers.

• Click on the upload button or chose upload from the tools menu. Thus the
code is uploaded by the bootloader onto the microcontroller.

Arduino

• Basic Adruino functions are:

• digitalRead(pin): Reads the digital value at the given pin.

• digitalWrite(pin, value): Writes the digital value to the given pin.

• pinMode(pin, mode): Sets the pin to input or output mode.

• analogRead(pin): Reads and returns the value.

• analogWrite(pin, value): Write

• serial.begin(baud rate): Sets the beginning of serial communication by setting
the bit rate.s the value to that pin.

Arduino

• Design your own Arduino

• The following components are needed to design Arduino Board- A
breadboard, a led, a power jack, a IC socket, a microcontroller, few
resistors, 2 regulators, 2 capacitors.
• The IC socket and the power jack are mounted on the board.

• Add the 5v and 3.3v regulator circuits using the combinations of regulators and
capacitors.

• Add proper power connections to the microcontroller pins.

• Connect the reset pin of the IC socket to a 10K resistor.

• Connect the crystal oscillators to pins 9 and 10

• Connect the led to the appropriate pin.

• Mount the female headers onto the board and connect them to the respective pins
on the chip.

• Mount the row of 6 male headers, which can be used as an alternative to upload
programs.

• Upload the program on the Microcontroller of the readymade Adruino and then pry
it off and place back on the user kit.

Arduino

• Advantages of Arduino Board

• 1. It is inexpensive

• 2. It comes with an open source hardware feature which enables users to
develop their own kit using already available one as a reference source.

• 3. The Arduino software is compatible with all types of operating systems like
Windows, Linux, and Macintosh etc.

• 4. It also comes with open source software feature which enables
experienced software developers to use the Arduino code to merge with the
existing programming language libraries and can be extended and modified.

• 5. It is easy to use for beginners.

• 6. We can develop an Arduino based project which can be completely stand
alone or projects which involve direct communication with the software
loaded in the computer.

• 7. It comes with an easy provision of connecting with the CPU of the
computer using serial communication over USB as it contains built in power
and reset circuitry.

Arduino

• Interfaces UART Peripheral:

• A UART (Universal Asynchronous Receiver/Transmitter) is a serial interface.

• It has only one UART module.

• The pins (RX, TX) of the UART are connected to a USB-to-UART converter
circuit and also connected to pin0 and pin1 in the digital header.

• SPI Peripheral:

• The SPI (Serial Peripheral Interface) is another serial interface. It has only one
SPI module.

• TWI:

• The I2C or Two Wire Interface is an interface consisting of only two wires,
serial data, and a serial clock: SDA, SCL.

• You can reach these pins from the last two pins in the digital header or pin4
and pin5 in the analog header.

IoT Platform
• What Are the Top IoT App Development Platforms?

• Currently, there are more than 600 publicly known Internet of Things
platforms globally. However, the leaders — Amazon AWS IoT Core,
Microsoft Azure IoT Hub and IBM Watson — still hold their positions as the
top three Internet of Things app development platforms.

• Why do I need an IoT platform?

• An IoT platform is a unique tool that will provide continuous monitoring of
all your assets, be it vehicles, manufacturing equipment, livestock, or
anything else. It will help you as the owner of a business gain a
comprehensive view of all processes seasoned with intelligent analytics of
collected data. The result — quicker decisions, reduced issues and
increased revenues.

• What Is the Difference between IoT and Cloud Computing?

• IoT is about gathering data from physical devices and transferring it to
digital space for further analysis. Cloud computing is purely about data
processing, delivery and storage. These are two different technologies that
complement each other, resulting in efficient solutions.

Evolution of IOE and its benefits

• What Is the Internet of Everything (IoE)?

• The evolution of the global web has resulted in virtual connections
ubiquitously penetrating real-world objects and activities. Today,
everything can be connected with everything, creating a new
distributed ecosystem that goes beyond the familiar IoT (Internet of
Things) concept. Cisco has coined a special term — the Internet of
Everything (IoE) — to describe this dynamically changing
phenomenon. In this article, we will formulate the Internet of
Everything definition and how it differs from the IoT.

https://www.sam-solutions.com/industries/internet-of-things/
https://www.sam-solutions.com/industries/internet-of-things/

Evolution of IOE and its benefits
• Internet for Everything: Definition and

Main Features

• The IoE concept is based on the idea of
all-round connectivity, intelligence and
cognition. It means that intelligent
internet connections are not restricted by
computers, tablets and smartphones (as
used to be the case for the last couple of
decades). Any object can be outfitted with
digital features and connected to the
common network of other objects, people
and processes in order to generate
valuable information, exchange it and
facilitate relevant decision-making.

Evolution of IOE and its benefits
• What Is IoE?

• The Internet of Everything is the connections between people, things,
data and processes combined into a common interrelated system, the
aim of which is to improve experiences and make smarter decisions.

• The IoE philosophy depicts the world in which billions of sensors are
implanted into billions of devices, machines and ordinary objects,
giving them expanded networking opportunities, thus making them
smarter.

• What does IoE mean for businesses, governments and individuals?
The main goal of the IoE technology is to convert collected
information into actions, facilitate data-based decision-making and
provide new capabilities and richer experiences.

Evolution of IOE and its benefits
• IoE Features

• Decentralization and moving to the edge — data is processed not in
a single center, but in numerous distributed nodes

• Data input and output — external data can be put into devices and
given back to other components of the network

• Relation to every technology in the process of digital
transformation — cloud computing, fog computing, AI, ML, IoT, Big
Data, etc. Actually, a rise in Big Data and the IoE technology
development are interconnected.

https://www.sam-solutions.com/blog/digital-transformation/
https://www.sam-solutions.com/blog/digital-transformation/
https://www.sam-solutions.com/blog/fog-computing-vs-cloud-computing-for-iot-projects/

Evolution of IOE and its benefits
• IoE Constituent Elements

• Key components of the IoE market are hardware, software and services. As
for constituent elements of the Internet of Everything, there are four of
them:

• People

• People provide their personal insights via websites, applications or connected
devices they use (such as social networks, healthcare sensors and fitness trackers); AI
algorithms and other smart technologies analyze this data to “understand” human
issues and deliver relevant content according to their personal or business needs
that helps them quickly solve issues or make decisions.

• Things

• Here we encounter the pure IoT concept. Various physical items embedded with
sensors and actuators generate data on their status and send it to the needed
destination across the network.

Evolution of IOE and its benefits

• Data
• The raw data generated by devices

has no value. But once it is
summarized, classified and analyzed,
it turns into priceless information that
can control various systems and
empower intelligent solutions.

• Processes
• Different processes based on artificial

intelligence, machine learning, social
networks or other technologies
ensure that the right information is
sent to the right person at the right
time. The goal of processes is to
guarantee the best possible usage of
Big Data.

Evolution of IOE and its benefits
• Internet of Everything vs. Internet of Things

• To avoid the confusion between the terms, IoT vs. IoE, let’s figure out in what
ways they differ.

• The core difference between the Internet of Things and the Internet of
Everything is the number of pillars for these concepts:

• IoT focuses on physical objects only

• IoE encompasses four components (things, processes, data and people)

• The IoT, in essence, is the interconnectivity of physical objects that send and
receive data, while the IoE is a wider term that includes, apart from IoT,
numerous technologies and people as the end-nodes.

Evolution of IOE and its benefits

• Although IoT and IoE are different terms, there are also
some similarities between them:

• Decentralization — both systems are distributed and don’t have a
single center; each node works as a small management center and is
able to perform certain tasks independently

• Security issues — distributed systems are still highly vulnerable to
penetration and cyberattacks; the more devices are connected to the
network, the higher the susceptibility to breaches

• On the one hand, decentralization is one of the IoE and IoT
advantages, since the whole system doesn’t fail even if there are
problems in a couple of nodes. On the other has, such a distribution
causes disadvantages in the form of threats for data security and
personal privacy.

Evolution of IOE and its benefits

• Internet of Everything Examples

• Practically every industry can apply the Internet of Everything model into
its processes and benefit from it. Here are some general examples:

• Municipality systems can implement smart water and electricity meters for
residents and commercial organizations in order to monitor usage rates
and make decisions concerning economy and cutting costs.

• The manufacturing industry can implement sensors for predictive
maintenance into production to monitor equipment parts that need to be
fixed or replaced. This helps eliminate downtime and reduce the fixing
costs.

• Logistics and delivery companies can introduce sensors and smart devices
on trucks to optimize delivery conditions and possible routing. Eventually,
companies can improve end-user satisfaction.

https://www.sam-solutions.com/industries/logistics-and-transportation-software-development/
https://www.sam-solutions.com/industries/logistics-and-transportation-software-development/

IoT Vs IoE
• Internet of Everything (IoE) :

IoE is the intelligent connection between 4 key elements i.e people, process, data, and things. It is
considered as superset of Internet of Things (IOT). IoE covers the wider concept of connectivity
where network intelligence works as the foundation of Internet of Things. Internet of Everything
acts as an extension of Internet of Things.

• Internet of Things (IoT) :
IoT is a network of interconnected physical devices/objects which collects and exchange data over
wireless networks. Internet of Things has two main parts i.e ‘Internet’ which is the backbone of
connectivity and ‘Things’ meaning to object/physical devices. It brings the power of the internet,
data processing and analytics and decision making to the real world of physical objects. as an
extension of Internet of Things.

https://www.geeksforgeeks.org/internet-of-everything/
https://www.geeksforgeeks.org/introduction-to-internet-of-things-iot-set-1/

IoT Vs IoE
Sl No. Internet of Everything (IoE) Internet of Things (IoT)

1.
The term IoE is coined by CISCO.

The term IoT coined by Kevin Ashton in 1999 during his work

at Procter & Gamble.

2.

IoE is the intelligent connection between people, process, data

and things by creating ‘web of things’ which is the next

generation of internet.

IoT is the network of physical devices where collection and

exchange of data occurs without human intervention.

3.

The goal of IoE is turning information into actions, providing

data based decision making and provide new capabilities and

richer experiences.

The goal of IoT is to form an ecosystem of connected

objects/physical devices. Or to create an ecosystem

connecting from Thing to Thing.

4. In IoE, communication occurs between Machine to Machine,

Machine to People and technology assisted People to People. In IoT, communication occurs between Machine to Machine.

5. It is more complex than IoT as IoE includes IoD (Internet of

Digital), IoH (Internet of Human) and IoT (Internet of Things).

It is less complex than IoE as IoT(Internet of Things) is

considered as a part of Bigger IoE ecosystem.

6. It has four pillars people, process, data, and things. It has one pillar things i.e it focuses on physical objects only.

7.
It is considered as the superset for Internet of Things(IoT), along

with IoH, IoD, communication technologies and the internet

iteself and it is considered a generation after IoT.

It is considered as the subset of bigger Internet of

Everything(IoE) and IoT is considered one generation before

IoE.

8.
Example are Connecting roads with hospitals to save more lives,

Connecting homes for comfort living, Connecting food and

people in the supply chain, Elderly care monitoring.

Examples are Wearable health monitors, Connected

appliances, Autonomous farming equipment, smarter energy

management systems, Smart surveillance.

References

• https://www.elprocus.com/building-the-internet-of-things-using-
raspberry-pi/

• https://realpython.com/python-raspberry-pi/

• https://www.sam-solutions.com/blog/top-iot-platforms/

• https://www.sam-solutions.com/blog/what-is-internet-of-everything-
ioe/

• https://www.geeksforgeeks.org/difference-between-ioe-and-iot/

• https://www.raspberrypi.org/documentation/computers/using_linux.
html

https://www.elprocus.com/building-the-internet-of-things-using-raspberry-pi/
https://www.elprocus.com/building-the-internet-of-things-using-raspberry-pi/
https://realpython.com/python-raspberry-pi/
https://www.sam-solutions.com/blog/top-iot-platforms/
https://www.sam-solutions.com/blog/what-is-internet-of-everything-ioe/
https://www.sam-solutions.com/blog/what-is-internet-of-everything-ioe/
https://www.geeksforgeeks.org/difference-between-ioe-and-iot/
https://www.raspberrypi.org/documentation/computers/using_linux.html
https://www.raspberrypi.org/documentation/computers/using_linux.html

Chapter 6

IoT Systems –
Logical Design using Python

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Outline

• Introduction to Python

• Installing Python

• Python Data Types & Data Structures

• Control Flow

• Functions

• Modules

• Packages

• File Input/Output

• Date/Time Operations

• Classes

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Python

• Python is a general-purpose high level programming language and suitable for providing a solid
foundation to the reader in the area of cloud computing.

• The main characteristics of Python are:

• Multi-paradigm programming language

• Python supports more than one programming paradigms including object-oriented programming and structured
programming

• Interpreted Language

• Python is an interpreted language and does not require an explicit compilation step. The Python interpreter
executes the program source code directly, statement by statement, as a processor or scripting engine does.

• Interactive Language

• Python provides an interactive mode in which the user can submit commands at the Python prompt and interact
with the interpreter directly.

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Python - Benefits

• Easy-to-learn, read and maintain
• Python is a minimalistic language with relatively few keywords, uses English keywords and has fewer syntactical constructions

as compared to other languages. Reading Python programs feels like English with pseudo-code like constructs. Python is easy
to learn yet an extremely powerful language for a wide range of applications.

• Object and Procedure Oriented
• Python supports both procedure-oriented programming and object-oriented programming. Procedure oriented paradigm

allows programs to be written around procedures or functions that allow reuse of code. Procedure oriented paradigm allows
programs to be written around objects that include both data and functionality.

• Extendable
• Python is an extendable language and allows integration of low-level modules written in languages such as C/C++. This is

useful when you want to speed up a critical portion of a program.

• Scalable
• Due to the minimalistic nature of Python, it provides a manageable structure for large programs.

• Portable
• Since Python is an interpreted language, programmers do not have to worry about compilation, linking and loading of

programs. Python programs can be directly executed from source

• Broad Library Support
• Python has a broad library support and works on various platforms such as Windows, Linux, Mac, etc.

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Python - Setup

• Windows

• Python binaries for Windows can be downloaded from http://www.python.org/getit .

• For the examples and exercise in this book, you would require Python 2.7 which can be directly downloaded from:
http://www.python.org/ftp/python/2.7.5/python-2.7.5.msi

• Once the python binary is installed you can run the python shell at the command prompt using

> python

• Linux

#Install Dependencies

sudo apt-get install build-essential

sudo apt-get install libreadline-gplv2-dev libncursesw5-dev libssl-dev libsqlite3-dev tk-dev libgdbm-dev libc6-dev libbz2-dev

#Download Python

wget http://python.org/ftp/python/2.7.5/Python-2.7.5.tgz

tar -xvf Python-2.7.5.tgz

cd Python-2.7.5

#Install Python

./configure

make

sudo make install

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.python.org/getit
http://www.python.org/ftp/python/2.7.5/python-2.7.5.msi
http://python.org/ftp/python/2.7.5/Python-2.7.5.tgz
http://www.internet-of-things-book.com/

Numbers

• Numbers

• Number data type is used to store numeric values. Numbers are immutable data types, therefore changing the value of a number data
type results in a newly allocated object.

#Integer

>>>a=5

>>>type(a)

<type ’int’>

#Floating Point

>>>b=2.5

>>>type(b)

<type ’float’>

#Long

>>>x=9898878787676L

>>>type(x)

<type ’long’>

#Complex

>>>y=2+5j

>>>y

(2+5j)

>>>type(y)

<type ’complex’>
>>>y.real

2

>>>y.imag

5

#Addition

>>>c=a+b

>>>c

7.5

>>>type(c)

<type ’float’>

#Subtraction

>>>d=a-b

>>>d

2.5

>>>type(d)

<type ’float’>

#Multiplication

>>>e=a*b

>>>e

12.5

>>>type(e)

<type ’float’>

#Division

>>>f=b/a

>>>f

0.5

>>>type(f)

<type float’>

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

#Power

>>>g=a**2

>>>g

25

http://www.internet-of-things-book.com/

Strings

• Strings

• A string is simply a list of characters in order. There are no limits to the number of characters you can have in a string.

#Create string

>>>s="Hello World!"

>>>type(s)

<type ’str’>

#String concatenation

>>>t="This is sample program."

>>>r = s+t

>>>r

’Hello World!This is sample program.’

#Get length of string

>>>len(s)

12

#Convert string to integer

>>>x="100"

>>>type(s)

<type ’str’>
>>>y=int(x)

>>>y

100

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

#Print string

>>>print s

Hello World!

#Formatting output

>>>print "The string (The string (Hello World!)

has 12 characters

#Convert to upper/lower case

>>>s.upper()

’HELLO WORLD!’
>>>s.lower()

’hello world!’

#Accessing sub-strings

>>>s[0]

’H’
>>>s[6:]

’World!’
>>>s[6:-1]

’World’

#strip: Returns a copy of the string with the

#leading and trailing characters removed.

>>>s.strip("!")

’Hello World’

http://www.internet-of-things-book.com/

Lists

• Lists

• List a compound data type used to group together other values. List items need not all have the same type. A list contains items
separated by commas and enclosed within square brackets.

#Create List

>>>fruits=[’apple’,’orange’,’banana’,’mango’]
>>>type(fruits)

<type ’list’>

#Get Length of List

>>>len(fruits)

4

#Access List Elements

>>>fruits[1]

’orange’
>>>fruits[1:3]

[’orange’, ’banana’]
>>>fruits[1:]

[’orange’, ’banana’, ’mango’]

#Appending an item to a list

>>>fruits.append(’pear’)
>>>fruits

[’apple’, ’orange’, ’banana’, ’mango’, ’pear’]

#Removing an item from a list

>>>fruits.remove(’mango’)
>>>fruits

[’apple’, ’orange’, ’banana’, ’pear’]

#Inserting an item to a list

>>>fruits.insert(1,’mango’)
>>>fruits

[’apple’, ’mango’, ’orange’, ’banana’, ’pear’]

#Combining lists

>>>vegetables=[’potato’,’carrot’,’onion’,’beans’,’r
adish’]
>>>vegetables

[’potato’, ’carrot’, ’onion’, ’beans’, ’radish’]

>>>eatables=fruits+vegetables

>>>eatables

[’appl
e’,
’mang
o’,
’orang
e’,
’banan
a’,
’pear’, ’potato’, ’carrot’, ’onion’, ’beans’, ’radish’]

#Mixed data types in a list

>>>mixed=[’data’,5,100.1,8287398L]
>>>type(mixed)

<type ’list’>
>>>type(mixed[0])

<type ’str’>
>>>type(mixed[1])

<type ’int’>
>>>type(mixed[2])

<type ’float’>
>>>type(mixed[3])

<type ’long’>

#Change individual elements of a list

>>>mixed[0]=mixed[0]+" items"

>>>mixed[1]=mixed[1]+1

>>>mixed[2]=mixed[2]+0.05

>>>mixed

[’data items’, 6, 100.14999999999999, 8287398L]

#Lists can be nested

>>>nested=[fruits,vegetables]

>>>nested

[[’apple’, ’mango’, ’orange’, ’banana’, ’pear’],
[’potato’, ’carrot’, ’onion’, ’beans’, ’radish’]]

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Tuples

• Tuples

• A tuple is a sequence data type that is similar to the list. A tuple consists of a number of values separated by commas and enclosed
within parentheses. Unlike lists, the elements of tuples cannot be changed, so tuples can be thought of as read-only lists.

#Create a Tuple

>>>fruits=("apple","mango","banana","pineapple")

>>>fruits

(’apple’, ’mango’, ’banana’, ’pineapple’)

>>>type(fruits)

<type ’tuple’>

#Get length of tuple

>>>len(fruits)

4

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

#Get an element from a tuple

>>>fruits[0]

’apple’
>>>fruits[:2]

(’apple’, ’mango’)

#Combining tuples

>>>vegetables=(’potato’,’carrot’,’onion’,’radish’)
>>>eatables=fruits+vegetables

>>>eatables
(’apple’, ’mango’, ’banana’, ’pineapple’, ’potato’, ’carrot’, ’onion’, ’radish’)

http://www.internet-of-things-book.com/

Dictionaries

• Dictionaries

• Dictionary is a mapping data type or a kind of hash table that maps keys to values. Keys in a dictionary can be of any data type, though
numbers and strings are commonly used for keys. Values in a dictionary can be any data type or object.

#Create a dictionary

>>>student={’name’:’Mary’,’id’:’8776’,’major’:’CS’}
>>>student

{’major’: ’CS’, ’name’: ’Mary’, ’id’: ’8776’}
>>>type(student)

<type ’dict’>

#Get length of a dictionary

>>>len(student)

3

#Get the value of a key in dictionary

>>>student[’name’]
’Mary’

#Get all items in a dictionary

>>>student.items()

[(’gender’, ’female’), (’major’, ’CS’), (’name’, ’Mary’),
(’id’, ’8776’)]

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

#Get all keys in a dictionary

>>>student.keys()

[’gender’, ’major’, ’name’, ’id’]

#Get all values in a dictionary

>>>student.values()

[’female’, ’CS’, ’Mary’, ’8776’]

#Add new key-value pair

>>>student[’gender’]=’female’
>>>student

{’gende
r’: ’female’, ’major’: ’CS’, ’name’: ’Mary’, ’id’: ’8776’}

#A value in a dictionary can be another dictionary

>>>student1={’name’:’David’,’id’:’9876’,’major’:’ECE’}
>>>students={’1’: student,’2’:student1}
>>>students

{’1’:
{’gende
r’: ’female’, ’major’: ’CS’, ’name’: ’Mary’, ’id’: ’8776’}, ’2’:
{’
major’: ’ECE’, ’name’: ’David’, ’id’: ’9876’}}

#Check if dictionary has a key

>>>student.has_key(’name’)
True

>>>student.has_key(’grade’)
False

http://www.internet-of-things-book.com/

Type Conversions

#Convert to string

>>>a=10000

>>>str(a)

’10000’

#Convert to int

>>>b="2013"

>>>int(b)

2013

#Convert to float

>>>float(b)

2013.0

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

#Convert to long

>>>long(b)

2013L

#Convert to list

>>>s="aeiou"

>>>list(s)

[’a’, ’e’, ’i’, ’o’, ’u’]

#Convert to set

>>>x=[’mango’,’apple’,’banana’,’mango’,’banana’]
>>>set(x)

set([’mango’, ’apple’, ’banana’])

• Type conversion examples

http://www.internet-of-things-book.com/

Control Flow – if statement

• The if statement in Python is similar to the if statement in other languages.

>>>a = 25**5

>>>if a>10000:

print "More"

else:

print "Less"

More

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

>>>s="Hello World"

>>>if "World" in s:

s=s+"!"

print s

Hello World!

>>>if a>10000:

if a<1000000:

print "Between 10k and 100k"

else:

print "More than 100k"

elif a==10000:

print "Equal to 10k"

else:

print "Less than 10k"

More than 100k

>>>student={’name’:’Mary’,’id’:’8776’}
>>>if not student.has_key(’major’):

student[’major’]=’CS’

>>>student

{’major’: ’CS’, ’name’: ’Mary’, ’id’: ’8776’}

http://www.internet-of-things-book.com/

Control Flow – for statement

• The for statement in Python iterates over items of any sequence (list, string, etc.) in the order in which they
appear in the sequence.

• This behavior is different from the for statement in other languages such as C in which an initialization,
incrementing and stopping criteria are provided.

#Looping over characters in a string

helloString = "Hello World"

for c in helloString:

print c

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

#Looping over keys in a dictionary

student

=

’nam
e’:
’Mar
y’, ’id’: ’8776’,’gender’: ’female’, ’major’: ’CS’

for key in student:

print "%s: %s" % (key,student[key]

#Looping over items in a list

fruits=[’apple’,’orange’,’banana’,’mango’]

i=0

for item in fruits:

print "Fruit-%d: %s" % (i,item)

i=i+1

http://www.internet-of-things-book.com/

Control Flow – while statement

• The while statement in Python executes the statements within the while loop as long as the while condition is
true.

#Prints even numbers upto 100

>>> i = 0

>>> while i<=100:

if i%2 == 0:

print i

i = i+1

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Control Flow – range statement

• The range statement in Python generates a list of numbers in arithmetic progression.

#Generate a list of numbers from 10 - 100 with increments

of 10

>>>range(10,110,10)

[10, 20, 30, 40, 50, 60, 70, 80, 90,100]

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

#Generate a list of numbers from 0 – 9

>>>range (10)

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

http://www.internet-of-things-book.com/

Control Flow – break/continue statements

• The break and continue statements in Python are similar to the statements in C.

• Break

• Break statement breaks out of the for/while loop

• Continue

• Continue statement continues with the next iteration.
#Continue statement example

>>>fruits=[’apple’,’orange’,’banana’,’mango’]
>>>for item in fruits:

if item == "banana":

continue

else:

print item

apple

orange

mango

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

#Break statement example

>>>y=1

>>>for x in range(4,256,4):

y = y * x

if y > 512:

break

print y

4

32

384

http://www.internet-of-things-book.com/

Control Flow – pass statement

• The pass statement in Python is a null operation.

• The pass statement is used when a statement is required syntactically but you do not want any command or
code to execute.

>fruits=[’apple’,’orange’,’banana’,’mango’]
>for item in fruits:

if item == "banana":

pass

else:

print item

apple

orange

mango

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Functions

• A function is a block of code that takes information in (in the form of
parameters), does some computation, and returns a new piece of
information based on the parameter information.

• A function in Python is a block of code that begins with the keyword
def followed by the function name and parentheses. The function
parameters are enclosed within the parenthesis.

• The code block within a function begins after a colon that comes after
the parenthesis enclosing the parameters.

• The first statement of the function body can optionally be a
documentation string or docstring.

students = { '1': {'name': 'Bob', 'grade': 2.5},

'2': {'name': 'Mary', 'grade': 3.5},

'3': {'name': 'David', 'grade': 4.2},

'4': {'name': 'John', 'grade': 4.1},

'5': {'name': 'Alex', 'grade': 3.8}}

def averageGrade(students):

“This function computes the average grade”
sum = 0.0

for key in students:

sum = sum + students[key]['grade']

average = sum/len(students)

return average

avg = averageGrade(students)

print "The average garde is: %0.2f" % (avg)

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Functions - Default Arguments

• Functions can have default values of the parameters.

• If a function with default values is called with fewer parameters or without any parameter, the default values of the
parameters are used

>>>def displayFruits(fruits=[’apple’,’orange’]):
print "There are %d fruits in the list" % (len(fruits))

for item in fruits:

print item

#Using default arguments

>>>displayFruits()

apple

orange

>>>fruits = [’banana’, ’pear’, ’mango’]
>>>displayFruits(fruits)

banana

pear

mango

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Functions - Passing by Reference

• All parameters in the Python functions are passed by reference.

• If a parameter is changed within a function the change also reflected back in the calling function.

>>>def displayFruits(fruits):

print "There are %d fruits in the list" % (len(fruits))

for item in fruits:

print item

print "Adding one more fruit"

fruits.append('mango')

>>>fruits = ['banana', 'pear', 'apple']

>>>displayFruits(fruits)

There are 3 fruits in the list

banana

pear

apple

#Adding one more fruit

>>>print "There are %d fruits in the list" % (len(fruits))

There are 4 fruits in the list

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Functions - Keyword Arguments

• Functions can also be called using keyword arguments that identifies the arguments by the parameter name when the
function is called.

>>>def

printStudentRecords(name,age=20,major=’CS’):
print "Name: " + name

print "Age: " + str(age)

print "Major: " + major

#This will give error as name is required argument

>>>printStudentRecords()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: printStudentRecords() takes at least 1

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

argument (0 given)

#name is a formal argument.

#**kwargs is a keyword argument that receives all

arguments except the formal argument as a

dictionary.

>>>def student(name, **kwargs):

print "Student Name: " + name

for key in kwargs:

print key + ’: ’ + kwargs[key]

>>>student(name=’Bob’, age=’20’, major = ’CS’)
Student Name: Bob

age: 20
major: CS

#Correct use

>>>printStudentRecords(name=’Alex’)
Name: Alex

Age: 20

Major: CS

>>>printStudentRecords(name=’Bob’,age=22,major=’EC
E’)
Name: Bob

Age: 22

Major: ECE

>>>printStudentRecords(name=’Alan’,major=’ECE’)
Name: Alan

Age: 20

Major: ECE

http://www.internet-of-things-book.com/

Functions - Variable Length Arguments

• Python functions can have variable length arguments. The variable length arguments are passed to as a tuple to the
function with an argument prefixed with asterix (*)

>>>def student(name, *varargs):

print "Student Name: " + name

for item in varargs:

print item

>>>student(’Nav’)
Student Name: Nav

>>>student(’Amy’, ’Age: 24’)
Student Name: Amy

Age: 24

>>>student(’Bob’, ’Age: 20’, ’Major: CS’)
Student Name: Bob

Age: 20

Major: CS

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Modules

• Python allows organizing the program
code into different modules which
improves the code readability and
management.

• A module is a Python file that defines
some functionality in the form of functions
or classes.

• Modules can be imported using the import
keyword.

• Modules to be imported must be present
in the search path.

#student module - saved as student.py

def averageGrade(students):

sum = 0.0

for key in students:

sum = sum + students[key]['grade']

average = sum/len(students)

return average

def printRecords(students):

print "There are %d students" %(len(students))

i=1

for key in students:

print "Student-%d: " % (i)

print "Name: " + students[key]['name']

print "Grade: " + str(students[key]['grade'])

i = i+1

#Using student module

>>>import student

>>>students = '1': 'name': 'Bob', 'grade': 2.5,

'2': 'name': 'Mary', 'grade': 3.5,

'3': 'name': 'David', 'grade': 4.2,

'4': 'name': 'John', 'grade': 4.1,

'5': 'name': 'Alex', 'grade': 3.8

>>>student.printRecords(students)

There are 5 students

Student-1:

Name: Bob

Grade: 2.5

Student-2:

Name: David

Grade: 4.2

Student-3:

Name: Mary

Grade: 3.5

Student-4:

Name: Alex

Grade: 3.8

Student-5:

Name: John

Grade: 4.1

>>>avg = student. averageGrade(students)

>>>print "The average garde is: %0.2f" % (avg)

3.62

Importing a specific function from a module

>>>from student import averageGrade

Listing all names defines in a module

>>>dir(student)

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Packages

• Python package is hierarchical file structure that consists of
modules and subpackages.

• Packages allow better organization of modules related to a single
application environment.

skimage package listing

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

skimage/

init .py

Top level package

Treat directory as a package

color/ color color subpackage

init .py

colorconv.py

colorlabel.py

rgb_colors.py

draw/ draw draw subpackage

init .py

draw.py

setup.py

exposure/ exposure subpackage

init .py

_adapthist.py

exposure.py

feature/ feature subpackage

init .py

_brief.py

_daisy.py

...

http://www.internet-of-things-book.com/

File Handling

• Python allows reading and writing to files using the file
object.

• The open(filename, mode) function is used to get a file
object.

• The mode can be read (r), write (w), append (a), read and
write (r+ or w+), read-binary (rb), write-binary (wb), etc.

• After the file contents have been read the close function is
called which closes the file object.

Example of reading line by line

>>>fp = open('file1.txt','r')

>>>print "Line-1: " + fp.readline()

Line-1: Python supports more than one programming paradigms.

>>>print "Line-2: " + fp.readline()

Line-2: Python is an interpreted language.

>>>fp.close()

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

Example of reading an entire file

>>>fp = open('file.txt','r')

>>>content = fp.read()

>>>print content

This is a test file.

>>>fp.close()

Example of reading lines in a loop

>>>fp = open(’file1.txt’,’r’)
>>>lines = fp.readlines()

>>>for line in lines:

print line

Python supports more than one programming paradigms.

Python is an interpreted language.

http://www.internet-of-things-book.com/

File Handling

Example of seeking to a certain position

>>>fp = open('file.txt','r')

>>>fp.seek(10,0)

>>>content = fp.read(10)

>>>print content

ports more

>>>fp.close()

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

Example of reading a certain number of bytes

>>>fp = open('file.txt','r')

>>>fp.read(10)

'Python sup'

>>>fp.close()

Example of getting the current position of read

>>>fp = open('file.txt','r')

>>>fp.read(10)

'Python sup'

>>>currentpos = fp.tell

>>>print currentpos

<built-in method tell of file object at 0x0000000002391390>

>>>fp.close()

Example of writing to a file

>>>fo = open('file1.txt','w')

>>>content='This is an example of writing to a file in

Python.'

>>>fo.write(content)

>>>fo.close()

http://www.internet-of-things-book.com/

Date/Time Operations

• Python provides several functions for date and time access and conversions.

• The datetime module allows manipulating date and time in several ways.

• The time module in Python provides various time-related functions.

Examples of manipulating with date

>>>from datetime import date

>>>now = date.today()

>>>print "Date: " + now.strftime("%m-%d-%y")

Date: 07-24-13

>>>print "Day of Week: " + now.strftime("%A")

Day of Week: Wednesday

>>>print "Month: " + now.strftime("%B")

Month: July

>>>then = date(2013, 6, 7)

>>>timediff = now - then

>>>timediff.days

47

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

Examples of manipulating with time

>>>import time

>>>nowtime = time.time()

>>>time.localtime(nowtime)

time.struct_time(tm_year=2013, tm_mon=7, tm_mday=24, tm_ec=51, tm_wday=2, tm_yday=205,

tm_isdst=0)

>>>time.asctime(time.localtime(nowtime))

'Wed Jul 24 16:14:51 2013'

>>>time.strftime("The date is %d-%m-%y. Today is a %A. It is %H hours, %M minutes and %S seconds now.")

'The date is 24-07-13. Today is a Wednesday. It is 16 hours, 15 minutes and 14 seconds now.'

http://www.internet-of-things-book.com/

Classes

• Python is an Object-Oriented Programming (OOP) language. Python provides all the standard features of Object
Oriented Programming such as classes, class variables, class methods, inheritance, function overloading, and
operator overloading.

• Class
• A class is simply a representation of a type of object and user-defined prototype for an object that is composed of three things: a name,

attributes, and operations/methods.

• Instance/Object
• Object is an instance of the data structure defined by a class.

• Inheritance
• Inheritance is the process of forming a new class from an existing class or base class.

• Function overloading
• Function overloading is a form of polymorphism that allows a function to have different meanings, depending on its context.

• Operator overloading
• Operator overloading is a form of polymorphism that allows assignment of more than one function to a particular operator.

• Function overriding
• Function overriding allows a child class to provide a specific implementation of a function that is already provided by the base class. Child class

implementation of the overridden function has the same name, parameters and return type as the function in the base class.

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Class Example

• The variable studentCount is a
class variable that is shared by
all instances of the class
Student and is accessed by
Student.studentCount.

• The variables name, id and
grades are instance variables
which are specific to each
instance of the class.

• There is a special method by
the name init () which is
the class constructor.

• The class constructor
initializes a new instance
when it is created. The
function del () is the class
destructor

Examples of a class

class Student:

studentCount = 0

def init (self, name, id):

print "Constructor called"

self.name = name

self.id = id

Student.studentCount = Student.studentCount + 1

self.grades={}

def del (self):

print "Destructor called"

def getStudentCount(self):

return Student.studentCount

def addGrade(self,key,value):

self.grades[key]=value

def getGrade(self,key):

return self.grades[key]

def printGrades(self):

for key in self.grades:

print key + ": " + self.grades[key]

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

>>>s = Student(’Steve’,’98928’)
Constructor called

>>>s.addGrade(’Math’,’90’)
>>>s.addGrade(’Physics’,’85’)
>>>s.printGrades()

Physics: 85

Math: 90

>>>mathgrade = s.getGrade(’Math’)
>>>print mathgrade

90

>>>count = s.getStudentCount()

>>>print count

1

>>>del s

Destructor called

http://www.internet-of-things-book.com/

Class Inheritance

• In this example Shape is the base class and Circle is the derived class. The class Circle inherits the attributes of the Shape class.

• The child class Circle overrides the methods and attributes of the base class (eg. draw() function defined in the base class Shape is overridden in child
class Circle).

Examples of class inheritance

class Shape:

def init (self):

print "Base class constructor"

self.color = ’Green’
self.lineWeight = 10.0

def draw(self):

print "Draw - to be implemented"

def setColor(self, c):

self.color = c

def getColor(self):

return self.color

def setLineWeight(self,lwt):

self.lineWeight = lwt

def getLineWeight(self):

return self.lineWeight

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

class Circle(Shape):

def init (self, c,r):

print "Child class constructor"

self.center = c

self.radius = r

self.color = ’Green’
self.lineWeight = 10.0

self. label = ’Hidden circle label’

def setCenter(self,c):

self.center = c

def getCenter(self):

return self.center

def setRadius(self,r):

self.radius = r

def getRadius(self):

return self.radius

def draw(self):

print "Draw Circle (overridden function)"

class Point:

def init (self, x, y):

self.xCoordinate = x

self.yCoordinate = y

def setXCoordinate(self,x):

self.xCoordinate = x

def getXCoordinate(self):

return self.xCoordinate

def setYCoordinate(self,y):

self.yCoordinate = y

def getYCoordinate(self):

return self.yCoordinate

>>>p = Point(2,4)

>>>circ = Circle(p,7)

Child class constructor

>>>circ.getColor()

’Green’
>>>circ.setColor(’Red’)
>>>circ.getColor()

’Red’
>>>circ.getLineWeight()

10.0

>>>circ.getCenter().getXCoordinate()

2

>>>circ.getCenter().getYCoordinate()

4

>>>circ.draw()

Draw Circle (overridden function)

>>>circ.radius

7

http://www.internet-of-things-book.com/

Further Reading

• Code Academy Python Tutorial, http://www.codecademy.com/tracks/python

• Google's Python Class, https://developers.google.com/edu/python/

• Python Quick Reference Cheat Sheet, http://www.addedbytes.com/cheat-sheets/python-cheat-sheet/

• PyCharm Python IDE, http://www.jetbrains.com/pycharm/

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.codecademy.com/tracks/python
http://www.addedbytes.com/cheat-sheets/python-cheat-sheet/
http://www.jetbrains.com/pycharm/
http://www.internet-of-things-book.com/

Chapter 7

IoT Physical Devices & Endpoints

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Outline

• Basic building blocks of an IoT Device

• Exemplary Device: Raspberry Pi

• Raspberry Pi interfaces

• Programming Raspberry Pi with Python

• Other IoT devices

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

What is an IoT Device

• A "Thing" in Internet of Things (IoT) can be any object that has a
unique identifier and which can send/receive data (including user
data) over a network (e.g., smart phone, smart TV, computer,
refrigerator, car, etc.).

• IoT devices are connected to the Internet and send information
about themselves or about their surroundings (e.g. information
sensed by the connected sensors) over a network (to other devices or
servers/storage) or allow actuation upon the physical
entities/environment around them remotely.

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

IoT Device Examples

• A home automation device that allows remotely monitoring the
status of appliances and controlling the appliances.

• An industrial machine which sends information abouts its operation
and health monitoring data to a server.

• A car which sends information about its location to a cloud-based
service.

• A wireless-enabled wearable device that measures data about a
person such as the number of steps walked and sends the data to a
cloud-based service.

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Basic building blocks of an IoT Device

• Sensing
• Sensors can be either on-board the IoT device or attached to the device.

• Actuation
• IoT devices can have various types of actuators attached that allow taking

• actions upon the physical entities in the vicinity of the device.

• Communication
• Communication modules are responsible for sending collected data to other

devices or cloud-based servers/storage and receiving data from other devices
and commands from remote applications.

• Analysis & Processing
• Analysis and processing modules are responsible for making sense of the

collected data.

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Block diagram of an IoT Device

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Exemplary Device: Raspberry Pi

• Raspberry Pi is a low-cost mini-computer with the physical size of a
credit card.

• Raspberry Pi runs various flavors of Linux and can perform almost all
tasks that a normal desktop computer can do.

• Raspberry Pi also allows interfacing sensors and actuators through
the general purpose I/O pins.

• Since Raspberry Pi runs Linux operating system, it supports Python
"out of the box".

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Exemplary Device: Raspberry Pi

• Raspberry Pi is a low-cost mini-computer with the physical size of a
credit card.

• Raspberry Pi runs various flavors of Linux and can perform almost all
tasks that a normal desktop computer can do.

• Raspberry Pi also allows interfacing sensors and actuators through
the general purpose I/O pins.

• Since Raspberry Pi runs Linux operating system, it supports Python
"out of the box".

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Raspberry Pi

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Linux on Raspberry Pi

• Raspbian
• Raspbian Linux is a Debian Wheezy port optimized for Raspberry Pi.

• Arch
• Arch is an Arch Linux port for AMD devices.

• Pidora
• Pidora Linux is a Fedora Linux optimized for Raspberry Pi.

• RaspBMC
• RaspBMC is an XBMC media-center distribution for Raspberry Pi.

• OpenELEC
• OpenELEC is a fast and user-friendly XBMC media-center distribution.

• RISC OS
• RISC OS is a very fast and compact operating system.

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Raspberry Pi GPIO

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Raspberry Pi Interfaces

• Serial

• The serial interface on Raspberry Pi has receive (Rx) and transmit (Tx) pins
for communication with serial peripherals.

• SPI

• Serial Peripheral Interface (SPI) is a synchronous serial data protocol used
for communicating with one or more peripheral devices.

• I2C

• The I2C interface pins on Raspberry Pi allow you to connect hardware
modules. I2C interface allows synchronous data transfer with just two pins -
SDA (data line) and SCL (clock line).

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Raspberry Pi Example:

Interfacing LED and switch with Raspberry Pi

from time import sleep

import RPi.GPIO as GPIO

GPIO.setmode(GPIO.BCM)

#Switch Pin

GPIO.setup(25, GPIO.IN)

#LED Pin

GPIO.setup(18, GPIO.OUT)

state=false

def toggleLED(pin):

state = not state

GPIO.output(pin, state)

while True:

try:

if (GPIO.input(25) == True):

toggleLED(pin)

sleep(.01)

except KeyboardInterrupt:

exit()

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

Other Devices

• pcDuino

• BeagleBone Black

• Cubieboard

Bahga & Madisetti, © 2015Book website: http://www.internet-of-things-book.com

http://www.internet-of-things-book.com/

TAB

Programming
the Raspberry
Getting Started
with Python

Simon Monk

Programming the Raspberry Pi

About the Author

Dr. Simon Monk (Preston, UK) has a degree in cybernetics and computer science and a Ph.D. in
software engineering. Simon spent several years as an academic before he returned to the industry,
co-founding the mobile software company Momote Ltd. Simon is now a full-time author and has
published three books in the McGraw-Hill Evil Genius series. He is also the author of Programming
Arduino and has published books on IOIO and .NET Gadgeteer. You can follow Simon on Twitter
@simonmonk2.

Programming the Raspberry Pi

Getting Started with Python

Simon Monk

New York Chicago San Francisco
Lisbon London Madrid Mexico City

Milan New Delhi San Juan
Seoul Singapore Sydney Toronto

Copyright © 2013 by The McGraw-Hill Companies. All rights reserved. Except as permitted under
the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed
in any form or by any means, or stored in a database or retrieval system, without the prior written
permission of the publisher.
ISBN: 978-0-07-180784-5
MHID: 0-07-180784-5

The material in this eBook also appears in the print version of this title: ISBN: 978-0-07-180783-8,
MHID: 0-07-180783-7
McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales

promotions, or for use in corporate training programs. To contact a representative please e-mail us at
bulksales@mcgraw-hill.com.
All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after

every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit
of the trademark owner, with no intention of infringement of the trademark. Where such designations
appear in this book, they have been printed with initial caps.
Information has been obtained by McGraw-Hill from sources believed to be reliable. However,

because of the possibility of human or mechanical error by our sources, McGraw-Hill, or others,
McGraw-Hill does not guarantee the accuracy, adequacy, or completeness of any information and is
not responsible for any errors or omissions or the results obtained from the use of such information.
TERMS OF USE

This is a copyrighted work and The McGraw-Hill Companies, Inc. ("McGrawHill") and its licensors
reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted
under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not
decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon,
transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without
McGraw-Hill's prior consent. You may use the work for your own noncommercial and personal use;
any other use of the work is strictly prohibited. Your right to use the work may be terminated if you
fail to comply with these terms.
THE WORK IS PROVIDED "AS IS." McGRAW-HILL AND ITS LICENSORS MAKE NO

GUARANTEES OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM USING THE WORK,
INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. McGraw-Hill and its
licensors do not warrant or guarantee that the functions contained in the work will meet your

requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its
licensors shall be liable to you or anyone else for any inaccuracy, error or omission, regardless of
cause, in the work or for any damages resulting therefrom. McGraw-Hill has no responsibility for the
content of any information accessed through the work. Under no circumstances shall McGraw-Hill
and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar
damages that result from the use of or inability to use the work, even if any of them has been advised
of the possibility of such damages. This limitation of liability shall apply to any claim or cause
whatsoever whether such claim or cause arises in contract, tort or otherwise.

mailto:bulksales@mcgraw-hill.com

To my brothers, Andrew and Tim Monk, for their love and wisdom.

CONTENTS AT A GLANCE

1 Introduction

2 Getting Started

3 Python Basics

4 Strings, Lists, and Dictionaries

5 Modules, Classes, and Methods

6 Files and the Internet

7 Graphical User Interfaces

8 Games Programming

9 Interfacing Hardware

10 Prototyping Project (Clock)

11 The RaspiRobot

12 What Next
Index

CONTENTS

Acknowledgments
Introduction

1 Introduction
What Is the Raspberry Pi?

What Can You Do with a Raspberry Pi?
A Tour of the Raspberry Pi
Setting Up Your Raspberry Pi

Buying What You Need
Connecting Everything Together

Booting Up

Summary

2 Getting Started
Linux

The Desktop
The Internet
The Command Line

Navigating with the Terminal
sudo

Applications

Internet Resources
Summary

3 Python Basics
IDLE

Python Versions
Python Shell
Editor

Numbers

Variables
For Loops
Simulating Dice
If

Comparisons
Being Logical
Else

While

Summary

4 Strings, Lists, and Dictionaries
String Theory
Lists

Functions
Hangman
Dictionaries
Tuples

Multiple Assignment

Multiple Return Values
Exceptions
Summary of Functions

Numbers
Strings
Lists
Dictionaries

Type Conversions
Summary

5 Modules, Classes, and Methods
Modules

Using Modules

Useful Python Libraries
Installing New Modules

Object Orientation

Defining Classes
Inheritance
Summary

6 Files and the Internet
Files

Reading Files

Reading Big Files
Writing Files
The File System

Pickling
Internet
Summary

7 Graphical User Interfaces

Tkinter
Hello World
Temperature Converter

Other GUI Widgets
Checkbutton
Listbox
Spinbox
Layouts
Scrollbar

Dialogs

Color Chooser
File Chooser

Menus

The Canvas
Summary

8 Games Programming

What Is Pygame?

Hello Pygame

A Raspberry Game
Following the Mouse
One Raspberry
Catch Detection and Scoring
Timing

Lots of Raspberries
Summary

9 Interfacing Hardware
GPIO Pin Connections

Direct Connection to GPIO Pins
Expansion Boards

Pi Face

Slice of PI/O
RaspiRobotBoard
Gertboard

Prototyping Boards

Pi Cobbler
Pi Plate
Humble Pi

Arduino and the Pi

Arduino and Pi Talk
Summary

10 Prototyping Project (Clock)

What You Need
Hardware Assembly
Software
Phase Two

Summary

11 The RaspiRobot
What You Need

Phase 1: A Basic Rover
Hardware Assembly
About the Software

Phase 2: Adding a Range Finder and Screen

Step 1: Assemble the Range Finder Serial Adapter
Step 2: Attach the Screen
Step 3: Update the Software

Step 4: Run It
Revised Software

Summary

12 What Next

Linux Resources
Python Resources
Raspberry Pi Resources

Other Programming Languages
Scratch
C

Applications and Projects
Media Center (Rasbmc)
Home Automation

Summary

Index

ACKNOWLEDGMENTS

As always, I thank Linda for her patience and support.

I also thank Andrew Robinson and my son, Matthew Monk, for their technical review of much of
the material in this book. Check out Andrew’s Raspberry Pi project book. I’m sure it will be
excellent.

From TAB/McGraw-Hill, my thanks go out to my patient and thoroughly nice editor Roger Stewart

and the excellent project management of Vastavikta Sharma and Patty Mon. It is always a pleasure to
work with such a great team.

INTRODUCTION

The Raspberry Pi is rapidly becoming a worldwide phenomena. People are waking up to the

possibility of a $35 (U.S.) computer that can be put to use in all sorts of settings—from a desktop

workstation to a media center to a controller for a home automation system.
This book explains in simple terms, to both nonprogrammers and programmers new to the

Raspberry Pi, how to start writing programs for the Pi in the popular Python programming language. It
then goes on to give you the basics of creating graphical user interfaces and simple games using the
pygame module.

The software in the book mostly uses Python 3, with the occasional use of Python 2 where

necessary for module availability. The Raspbian Wheezy distribution recommended by the Raspberry
Pi Foundation is used throughout the book.

The book starts with an introduction to the Raspberry Pi and covers the topics of buying the

necessary accessories and setting everything up. You then get an introduction to programming while
you gradually work your way through the next few chapters. Concepts are illustrated with sample
applications that will get you started programming your Raspberry Pi.

Three chapters are devoted to programming and using the Raspberry Pi’s GPIO connector, which
allows the device to be attached to external electronics. These chapters include two sample projects

—one for making an LED clock and the other a Raspberry Pi controller robot, complete with
ultrasonic rangefinder.

Here are the key topics covered in the book:
• Python numbers, variables, and other basic concepts
• Strings, lists, dictionaries, and other Python data structures
• Modules and object orientation
• Files and the Internet
• Graphical user interfaces using Tkinter
• Game programming using Pygame
• Interfacing with hardware via the GPIO connector
• Sample hardware projects

All the code listings in the book are available for download from the book’s website at
http://www.raspberrypibook.com, where you can also find other useful material relating to the book,
including errata.

http://www.raspberrypibook.com/

1
Introduction

The Raspberry Pi went on general sale at the end of February 2012 and immediately crashed the

websites of the suppliers chosen to take orders for it. So what was so special about this little device

and why has it created so much interest?

What Is the Raspberry Pi?

The Raspberry Pi, shown in Figure 1-1, is a computer that runs the Linux operating system. It has USB
sockets you can plug a keyboard and mouse into and HDMI (High-Definition Multimedia Interface)
video output you can connect a TV or monitor into. Many monitors only have a VGA connector, and
Raspberry Pi will not work with this. However, if your monitor has a DVI connector, cheap HDMI-
to-DVI adapters are available.

Figure 1-1 The Raspberry Pi

When Raspberry Pi boots up, you get the Linux desktop shown in Figure 1-2. This really is a
proper computer, complete with an office suite, video playback capabilities, games, and the lot. It’s
not Microsoft Windows; instead, it is Windows open source rival Linux (Debian Linux), and the
windowing environment is called LXDE.

Figure 1-2 The Raspberry Pi desktop

Its small (the size of a credit card) and extremely affordable (starting at $25). Part of the reason for
this low cost is that some components are not included with the board or are optional extras. For
instance, it does not come in a case to protect it—it is just a bare board. Nor does it come with a
power supply, so you will need to find yourself a 5V micro-USB power supply, much like you would
use to charge a phone (but probably with higher power). A USB power supply and a micro-USB lead
are often used for this.

What Can You Do with a Raspberry Pi?

You can do pretty much anything on a Raspberry Pi that you can on any other Linux desktop computer,
with a few limitations. The Raspberry Pi uses an SD card in place of a hard disk, although you can
plug in a USB hard disk. You can edit office documents, browse the Internet, and play games (even
games with quite intensive graphics, such as Quake).

The low price of the Raspberry Pi means that it is also a prime candidate for use as a media center.

It can play video, and you can just about power it from the USB port you find on many TVs.

A Tour of the Raspberry Pi

Figure 1-3 labels the various parts of a Raspberry Pi. This figure takes you on a tour of the Model B
Raspberry Pi, which differs from the Model A by virtue of having an RJ-45 LAN connector, allowing
it to be connected to a network.

Figure 1-3 The anatomy of a Raspberry Pi

The RJ-45 Ethernet connector is shown in the top-left corner of the figure. If your home hub is
handy, you can plug your Raspberry Pi directly into your local network. While we are on the subject,
it is worth noting that the Raspberry Pi does not have Wi-Fi built in. For wireless networking, you
will need to plug in a USB wireless adapter. This may then require some additional work installing
drivers.

Immediately below the Ethernet socket you’ll find a pair of USB sockets, one on top of the other.

You can plug a keyboard, mouse, or external hard disks into the board, but you’ll fairly rapidly run
out of sockets. For this reason, many people use a USB hub to gain a few more USB sockets.

In the bottom-left corner of the figure you’ll find an audio socket that provides a stereo analog
signal for headphones or powered speakers. The HDMI connector is also sound capable.

Next to the audio socket is an RCA video connector. You are unlikely to use this connector unless
you are using your Raspberry Pi with an older TV. You are far more likely to use the HDMI
connector immediately opposite it, shown at the top of the figure. HDMI is higher quality, includes
sound, and can be connected to DVI-equipped monitors with a cheap adapter.

To the right of the yellow RCA jack are two rows of pins. These are called GPIO (General

Purpose Input/Output) pins, and they allow the Raspberry Pi to be connected to custom electronics.
Users of the Arduino and other microcontroller boards will be used to the idea of GPIO pins. Later,
in Chapter 11, we will use these pins to enable our Raspberry Pi to be the “brain” of a little roving
robot by controlling its motors. In Chapter 10, we will use the Raspberry Pi to make an LED clock.

The Raspberry Pi has an SD card slot underneath the board. This SD card needs to be at least 2GB

in size. It contains the computer’s operating system as well as the file system in which you can store
any documents you create. The SD card is an optional extra feature when buying your Raspberry Pi.
Preparing your own SD card is a little complex to do, and suppliers such as SK Pang, Farnell, and RS
Components all sell already-prepared SD cards. Because no disk is built into your Raspberry Pi, this
card is effectively your computer, so you could take it out and put it in a different Raspberry Pi and
all your stuff would be there.

Above the SD card is a micro-USB socket. This is only used to supply power to the Raspberry Pi.

Therefore, you will need a power supply with a micro-USB connector on the end. This is the same
type of connector used by many mobile phones, including most Android phones. Do, however, check
that it is capable of supplying at least 700mA; otherwise, your Raspberry Pi may behave erratically.

For those interested in technical specs, the big square chip in the center of the board is where all

the action occurs. This is Broadcom’s “System on a Chip” and includes 256MB of memory as well as
the graphics and general-purpose processors that drive the Raspberry Pi.

You may also have noticed flat cable connectors next to the SD card and between the Ethernet and

HDMI connectors. These are for LCD displays and a camera, respectively. Look for camera and LCD
display modules becoming available for the Pi in the near future.

Setting Up Your Raspberry Pi

You can make your life easier by buying a prepared SD card and power supply when you buy your
Raspberry Pi, and for that matter you may as well get a USB keyboard and mouse (unless you have
them lurking around the house somewhere). Let’s start the setup process by looking at what you will
need and where to get it from.
Buying What You Need

Table 1-1 shows you what you will need for a fully functioning Raspberry Pi system. At the time of
writing, the Raspberry Pi itself is sold through two worldwide distributors based in the UK: Farnell
(and the related U.S. company Newark) and RS Components, which is not to be confused with
RadioShack.

Table 1-1 A Raspberry Pi Kit
Power Supply

Figure 1-4 show a typical USB power supply and USB-A-to-micro-USB lead.

Figure 1-4 USB power supply

You may be able to use a power supply from an old MP3 player or the like, as long as it is 5V and
can supply enough current. It is important not to overload the power supply because it could get hot
and fail (or even be a fire hazard). Therefore, the power supply should be able to supply at least
700mA, but 1A would give the Raspberry Pi a little extra when it comes to powering the devices
attached to its USB ports.

If you look closely at the specs written on the power supply, you should be able to determine its

current supply capabilities. Sometimes its power-handling capabilities will be expressed in watts
(W); if that’s the case, it should be at least 3W. If it indicates 5W, this is equivalent to 1A.
Keyboard and Mouse

The Raspberry Pi will work with pretty much any USB keyboard and mouse. You can also use most
wireless USB keyboards and mice—the kind that come with their own dongle to plug into the USB
port. This is quite a good idea, especially if they come as a pair. That way, you are only using up one
of the USB ports. This will also come in quite handy in Chapter 10 when we use a wireless keyboard
to control our Raspberry Pi–based robot.
Display

Including an RCA video output on the Raspberry Pi is, frankly, a bit puzzling because most people are
going to go straight to the more modern HDMI connector. A low-cost 22-inch LCD TV will make a
perfectly adequate display for the Pi. Indeed, you may just decide to use the main family TV, just
plugging the Pi into the TV when you need it.

If you have a computer monitor with just a VGA connector, you are not going to be able to use it

without an expensive converter box. On the other hand, if your monitor has a DVI connector, an
inexpensive adapter will do the job well.
SD Card

You can use your own SD card in the Raspberry Pi, but it will need to be prepared with an operating
system disk image. This is a little fiddly, so you may just want to spend a dollar or two more and buy
an SD card that is already prepared and ready to go.

You can also find people at Raspberry Pi meet-ups who will be happy to help you prepare an SD

card. The prepared SD cards supplied by Farnell and RS Components are overpriced. Look around
on the Internet to find suppliers (such as SK Pang) who sell prepared cards, with the latest operating
system distribution, for less than you would pay for an SD card in a supermarket. If you indeed want
to “roll your own” SD card, refer to the instructions found at www.raspberrypi.org/downloads.

To prepare your own card, you must have another computer with an SD card reader. The procedure

http://www.raspberrypi.org/downloads

is different depending on whether your host computer is a Windows, Mac, or Linux machine.
However, various people have produced useful tools that try to automate the process as much as
possible.

If you decide to roll your own, be sure to follow the instructions carefully—with some tools, it is

quite easy to accidentally reformat a hard disk attached to your computer if the tool mistakes it for the
SD card! Fortunately, this process is getting better all the time as easier-to-use software tools become
available.

A big advantage of making your own SD card is that you can actually choose from a range of

operating system distributions. Table 1-2 shows the most popular ones available at the time of
writing. Check on the Raspberry Pi Foundation’s website for newer distributions.

Table 1-2 Raspberry Pi Linux Distributions

Of course, nothing is stopping you from buying a few SD cards and trying out the different
distributions to see which you prefer. However, if you are a Linux beginner, you should stick to the
standard Raspbian Wheezy distribution.
Case

The Raspberry Pi does not come in any kind of enclosure. This helps to keep the price down, but also
makes it rather vulnerable to breakage. Therefore, it is a good idea to either make or buy a case as
soon as you can. Figure 1-5 shows a few of the ready-made cases currently available.

Figure 1-5 Commercial Raspberry Pi cases

The cases shown are supplied by (a) Adafruit (www.adafruit.com), (b) SK Pang
(www.skpang.co.uk/), and (c) ModMyPi (www.modmypi.com). The case you choose will depend on
what you plan to do with your Raspberry Pi. If you have access to a 3D printer, you can also use the
following open source designs:

• www.thingiverse.com/thing:23446
• www.thingiverse.com/thing:24721

You can also find a folded card design called the Raspberry Punnet at
www.raspberrypi.org/archives/1310.

People are having a lot of fun building their Raspberry Pi into all sorts of repurposed containers,

such as vintage computers and games consoles. One could even build a case using Legos. My first

http://www.adafruit.com/
http://www.skpang.co.uk/
http://www.modmypi.com/
http://www.thingiverse.com/thing:23446
http://www.thingiverse.com/thing:24721
http://www.raspberrypi.org/archives/1310

case for a Raspberry Pi was made by cutting holes in a plastic container that used to hold business
cards (see Figure 1-6).

Figure 1-6 A homemade Raspberry Pi case
Wi-Fi

Neither of the Raspberry Pi models has support for Wi-Fi. Therefore, to wirelessly connect your
Raspberry Pi to the network, you have just two options. The first is to use a USB wireless adapter
that just plugs into a USB socket (see Figure 1-7) . With any luck, Linux should recognize it and
immediately allow you to connect (or show what you need to do to connect).

Figure 1-7 Wi-Fi adapter

The Wi-Fi adapters in the list referenced in Table 1-1 are purported to work with the Raspberry
Pi. However, there are sometimes problems with Wi-Fi drivers, so be sure to check the Raspberry Pi
forum and wiki for up-to-date information on compatible devices.

The second option for Wi-Fi is to use a Wi-Fi bridge with a Model B Raspberry Pi. These devices
are usually USB powered and plug into the Ethernet socket on the Raspberry Pi. They are often used
by the owners of game consoles that have an Ethernet socket but no Wi-Fi. This setup has the
advantage in that the Raspberry Pi does not require any special configuration.
USB Hub

Because the Raspberry Pi has just two USB ports available, you will rapidly run out of sockets. The
way to obtain more USB ports is to use a USB hub (see Figure 1-8).

Figure 1-8 A USB hub

These hubs are available with anywhere from three to eight ports. Make sure that the port supports
USB 2. It is also a good idea to use a “powered” USB hub so that you do not draw too much power
from the Raspberry Pi.
Connecting Everything Together

Now that you have all the parts you need, let’s get it all plugged together and boot your Raspberry Pi
for the first time. Figure 1-9 shows how everything needs to be connected.

Figure 1-9 A Raspberry Pi system

Insert the SD card, connect the keyboard, mouse, and monitor to the Pi, attach the power supply,
and you are ready to go.

Booting Up

The first time you boot your Raspberry Pi, it will not immediately boot into the kind of graphical
environment you would normally see in, say, a Windows computer. Instead, it will stop to allow a
first-time configuration (see Figure 1-10). It is a good idea to make a number of the configuration
changes shown here.

Figure 1-10 Configuration screen

First, if your SD card is larger than 2GB, the Raspberry Pi will only make use of the first 2GB
unless you select the option to expand_rootfs. Select this option using the UP and DOWN ARROW keys
and ENTER.

Another change well worth making is the boot_behaviour option. If this is not set to Boot Straight

to Desktop, you will be forced to log in and start the windowing environment manually each time you
power up your Raspberry Pi (see Figure 1-11).

Figure 1-11 Boot-to-desktop option

Summary

Now that we have set up our Raspberry Pi and it is ready to use, we can start exploring some of its
features and get a grip on the basics of Linux.

2
Getting Started

The Raspberry Pi uses Linux as its operating system. This chapter introduces Linux and shows you

how to use the desktop and command line.

Linux

Linux is an open source operating system. This software has been written as a community project for
those looking for an alternative to the duopoly of Microsoft Windows and Apple OS X. It is a fully
featured operating system based on the same solid UNIX concepts that arose in the early days of
computing. It has a loyal and helpful following and has matured into an operating system that is
powerful and easy to use.

Although the operating system is called Linux, various Linux distributions (or distros) have been

produced. These involve the same basic operating system, but are packaged with different bundles of
applications or different windowing systems. Although many distros are available, the one
recommended by the Raspberry Pi foundation is called Raspbian Wheezy.

If you are only used to some flavor of Microsoft Windows, expect to experience some frustration

as you get used to a new operating system. Things work a little differently in Linux. Almost anything
you may want to change about Linux can be changed. The system is open and completely under your
control. However, as they say in Spiderman, with great power comes great responsibility. This
means that if you are not careful, you could end up breaking your operating system.

The Desktop

At the end of Chapter 1, we had just booted up our Raspberry Pi, logged in, and started up the
windowing system. Figure 2-1 serves to remind you of what the Raspberry Pi desktop looks like.

Figure 2-1 Raspberry Pi desktop

If you are a user of Windows or Mac computers, you will be familiar with the concept of a desktop

as a folder within the file system that acts as a sort of background to everything you do on the
computer.

Along the left side of the desktop, you see some icons that launch applications. Clicking the left-

most icon on the bar at the bottom of the screen will show us some of the applications and tools
installed on the Raspberry Pi (rather like the Start menu in Microsoft Windows). We are going to start
with the File Manager, which can be found under the Accessories.

The File Manager is just like the File Explorer in Windows or the Finder on a Mac. It allows you

to explore the file system, copy and move files, as well as launch files that are executable
(applications).

When it starts, the File Manager shows you the contents of your home directory. You may

remember that when you logged in, you gave your login name as pi. The root to your home directory
will be /home/pi. Note that like Mac’s OS X, Linux uses slash (/) characters to separate the parts of a
directory name. Therefore, / is called the root directory and /home/ is a directory that contains other
directories, one for each user. Our Raspberry Pi is just going to have one user (called pi), so this
directory will only ever contain a directory called pi. The current directory is shown in the address
bar at the top, and you can type directly into it to change the directory being viewed, or you can use
the navigation bar at the side. The contents of the directory /home/ pi include just the directories
Desktop and python_games.

Double-clicking Desktop will open the Desktop directory, but this is not of much interest because it

just contains the shortcuts on the left side of the desktop. If you open python_games, you will see
some games you can try out, as shown in Figure 2-2.

Figure 2-2 The contents of python_games, as shown in File Manager

You shouldn’t often need to use any of the file system outside of your home directory. You should
keep all documents, music files, and so on, housed within directories on your home folder or on an
external USB flash drive.

The Internet

If you have a home hub and can normally plug in any Internet device using an Ethernet cable, you
should have no problem getting your Raspberry Pi online. Your home hub should automatically assign
the Raspberry Pi an IP address and allow it to connect to the network.

The Raspberry Pi comes with a web browser called Midori, which you will find under the Internet

section of your start menu. You can check that your connection is okay by starting Midori and
connecting to a website of your choice, as shown in Figure 2-3.

Figure 2-3 The Midori web browser

The Command Line

If you are a Windows or Mac user, you may have never used the command line. If you are a Linux
user, on the other hand, you almost certainly will have done so. In fact, if you are a Linux user, then
about now you will have realized that you probably don’t need this chapter because it’s all a bit basic
for you.

Although it is possible to use a Linux system completely via the graphical interface, in general you

will need to type commands into the command line. You do this to install new applications and to
configure the Raspberry Pi.

From the launcher button (bottom left), open the LXTerminal, which is shown in Figure 2-4.

Figure 2-4 The LXTerminal command line
Navigating with the Terminal

You will find yourself using three commands a lot when you are using the command line. The first
command is pwd, which is short for print working directory and shows you which directory you are
currently in. Therefore, after the $ sign in the terminal window, type pwd and press RETURN, as shown
in Figure 2-5.

Figure 2-5 The pwd command

As you can see, we are currently in /home/pi. Rather than provide a screen shot for everything we

are going to type into the terminal, I will use the convention that anything I want you to type will be
prefixed with a $ sign, like this:

Anything you should see as a response will not have $ in front of it. Therefore, the whole process
of running the pwd command would look something like this:

The next common command we are going to discuss is ls, which is short for list and shows us a
list of the files and directories within the working directory. Try the following:

This tells us that the only thing in /home/pi is the directory Desktop.

The final command we are going to cover for navigating around is cd (which stands for change

directory). This command changes the current working directory. It can change the directory relative
either to the old working directory or to a completely different directory if you specify the whole
directory, starting with /. So, for example, the following command will change the current working
directory to /home/pi/Desktop:

You could do the same thing by typing this:

Note that when entering a directory or filename, you do not have to type all of it. Instead, at any
time after you have typed some of the name, you can press the TAB key. If the filename is unique at that
point, it will be automatically completed for you.
sudo

Another command that you will probably use a lot is sudo (for super-user do). This runs whatever
command you type after it as if you were a super-user. You might be wondering why, as the sole user
of this computer, you are not automatically a super-user. The answer is that, by default, your regular
user account (username: pi, password: raspberry) does not have privileges that, say, allow you to go
to some vital part of the operating system and start deleting files. Instead, to cause such mayhem, you
have to prefix those commands with sudo. This just adds a bit of protection against accidents.

For the commands we have discussed so far, you will not need to prefix them with sudo. However,

just for interest, try typing the following:

This will work the same way ls on its own works; you are still in the same working directory. The
only difference is that you will be asked for your password the first time you use sudo.

Applications

The Raspbian Wheezy distribution for Raspberry Pi is fairly sparse. However, loads of applications
can be installed. Installing new applications requires the command line again. The command apt-get
is used to both install and uninstall applications. Because installing an application often requires
super-user privileges, you should prefix apt-get commands with sudo.

The command apt-get uses a database of available packages that is updated over the Internet, so

the first apt-get command you should use is sudo apt-get update

which updates the database of packages. You will need to be connected to the Internet for it to work.
To install a particular package, all you need to know is the package manager name for it. For

example, to install the Abiword word processor application, all you need to type is the following:

It will take a while for everything that is needed to be downloaded and installed, but at the end of
the process you will find that you have a new folder in your start menu called Office that contains the
application Abiword (see Figure 2-6).

Figure 2-6 Abiword screen

You will notice that the text document in Abiword is actually part of this chapter. In fact, it is close
to this part of this chapter, as I am writing it. (I can feel myself falling into a recursive hole. I may
well vanish in a puff of logic.)

Abiword is a perfectly serviceable word processor. If I didn’t love my Mac quite so much, I
would be tempted to write this entire book on my Raspberry Pi.

While we are on the subject of office applications, the spreadsheet stable mate of Abiword is
called Gnumeric. To install it, here is all you need to type:

Once this application is installed, another option will have appeared in your Office menu—this one
for Gnumeric.

To find out about other packages you might want to install, look for recommendations on the

Internet, especially on the Raspberry Pi forum (www.raspberrypi.org/phpBB3). You can also browse
the list of packages available for Raspbian Wheezy at http://packages.debian.org/stable/.

Not all of these packages will work, because the Raspberry Pi does not have vast amounts of
memory and storage available to it; however, many will.

If you want to remove a package, use the following command:

This removes both the package and any packages it depends on that are not used by something else
that still needs them. Be sure to keep an eye on the bottom-right corner of your File Manager window;
it will tell you how much free space is available.

http://www.raspberrypi.org/phpBB3
http://packages.debian.org/stable/

Internet Resources

Aside from the business of programming the Raspberry Pi, you now have a functioning computer that
you are probably keen to explore. To help you with this, many useful Internet sites are available
where you can obtain advice and recommendations for getting the most out of your Raspberry Pi.

Table 2-1 lists some of the more useful sites relating to the Raspberry Pi. Your search engine will

happily show you many more.

Table 2-1 Internet Resources for the Raspberry Pi

Summary

Now that we have everything set up and ready to go on our Raspberry Pi, it is time to start
programming in Python.

3
Python Basics

The time has come to start creating some of our own programs for the Raspberry Pi. The language

we are going to use is called Python. It has the great benefit that it is easy to learn while at the same

time being powerful enough to create some interesting programs, including some simple games and
programs that use graphics.

As with most things in life, it is necessary to learn to walk before you can run, and so we will
begin with the basics of the Python language.

Okay, so a programming language is a language for writing computer programs in. But why do we

have to use a special language anyway? Why couldn’t we just use a human language? How does the
computer use the things that we write in this language?

The reason why we don’t use English or some other human language is that human languages are

vague and ambiguous. Computer languages use English words and symbols, but in a very structured
way.

IDLE

The best way to learn a new language is to begin using it right away. So let’s start up the program we
are going to use to help us write Python. This program is called IDLE, and you will find it in the
programming section of your start menu. In fact, you will find more than one entry for IDLE. Select
the one labelled “IDLE 3” after it. Figure 3-1 shows IDLE and the Python Shell.

Figure 3-1 IDLE and the Python Shell
Python Versions

Python 3 was a major change over Python 2. This book is based on Python 3.1, but as you get further
into Python you may find that some of the modules you want to use are not available for Python 3.
Python Shell

What you see in Figure 3-1 is the Python Shell. This is the window where you type Python commands
and see what they do. It is very useful for little experiments, especially while you’re learning Python.

Rather like at the command prompt, you can type in commands after the prompt (in this case, >>>)
and the Python console will show you what it has done on the line below.

Arithmetic is something that comes naturally to all programming languages, and Python is no
exception. Therefore, type 2 + 2 after the prompt in the Python Shell and you should see the result
(4) on the line below, as shown in Figure 3-2.

Figure 3-2 Arithmetic in the Python Shell
Editor

The Python Shell is a great place to experiment, but it is not the right place to write a program. Python
programs are kept in files so that you do not have to retype them. A file may contain a long list of
programming language commands, and when you want to run all the commands, what you actually do
is run the file.

The menu bar at the top of IDLE allows us to create a new file. Therefore, select File and then

New Window from the menu bar. Figure 3-3 shows the IDLE Editor in a new window.

Figure 3-3 The IDLE Editor

Type the following two lines of code into IDLE:

You will notice that the editor does not have the >>> prompt. This is because what we write here
will not be executed immediately; instead, it will just be stored in a file until we decide to run it. If
you wanted, you could use nano or some other text editor to write the file, but the IDLE editor
integrates nicely with Python. It also has some knowledge of the Python language and can thus serve
as a memory aid when you are typing out programs.

We need a good place to keep all the Python programs we will be writing, so open the File

Browser from the start menu (its under Accessories). Right-click over the main area and select New

and then Folder from the pop-up menu (see Figure 3-4). Enter the name Python for the folder and

press the RETURN key.

Figure 3-4 Creating a Python folder

Next, we need to switch back to our editor window and save the file using the File menu. Navigate

to inside the new Python directory and give the file the name hello.py, as shown in Figure 3-5.

Figure 3-5 Saving the program

To actually run the program and see what it does, go to the Run menu and select Run Module. You
should see the results of the program’s execution in the Python Shell. It is no great surprise that the
program prints the two words Hello and World, each on its own line.

What you type in the Python Shell does not get saved anywhere; therefore, if you exit IDLE and then

start it up again, anything you typed in the Python Shell will be lost. However, because we saved our
Editor file, we can load it at any time from the File menu.

NOTE To save this book from becoming a series of screen dumps, from now on if I want you to

type something in the Python Shell, I will proceed it with >>>. The results will then appear on

the lines below it.

Numbers

Numbers are fundamental to programming, and arithmetic is one of the things computers are very

good at. We will begin by experimenting with numbers, and the best place to experiment is the Python
Shell.

Type the following into the Python Shell:

This isn’t really advancing much beyond the 2 + 2 example we tried before. However, this
example does tell us a few things:

• * means multiply.
• / means divide.
• Python does multiplication before division, and it does division before addition.

If you wanted to, you could add some parentheses to guarantee that everything happens in the right
order, like this:

The numbers you have there are all whole numbers (or integers as they are called by
programmers). We can also use a decimal point if we want to use such numbers. In programming,
these kinds of numbers are called floats, which is short for floating point.

Variables

Sticking with the numbers theme for a moment, let’s investigate variables. You can think of a variable
as something that has a value. It is a bit like using letters as stand-ins for numbers in algebra. To
begin, try entering the following:

The equals sign assigns a value to a variable. The variable must be on the left side and must be a
single word (no spaces); however, it can be as long as you like and can contain numbers and the
underscore character (_). Also, characters can be upper- and lowercase. Those are the rules for
naming variables; however, there are also conventions. The difference is that if you break the rules,
Python will complain, whereas if you break the conventions, other programmers may snort derisively
and raise their eyebrows.

The conventions for variables are that they should start with a lowercase letter and should use an

underscore between what in English would be words (for instance, number_of_chickens) . The
examples in Table 3-1 give you some idea of what is legal and what is conventional.

Table 3-1 Naming Variables

Many other languages use a different convention for variable names called bumpy-case or camel-
case, where the words are separated by making the start of each word (except the first one) uppercase
(for example, numberOfChickens). You will sometimes see this in Python example code. Ultimately,
if the code is just for your own use, then how the variable is written does not really matter, but if your
code is going to be read by others, it’s a good idea to stick to the conventions.

By sticking to the naming conventions, it’s easy for other Python programmers to understand your

program.

If you do something Python doesn’t like or understand, you will get an error message. Try entering
the following:

This is an error because you are trying to define a variable that starts with a digit, which is not
allowed.

A little while ago, we assigned a value to the variable k. We can see what value it has by just

entering k, like so:

Python has remembered the value of k, so we can now use it in other expressions. Going back to
our original expression, we could enter the following:

For Loops

Arithmetic is all very well, but it does not make for a very exciting program. Therefore, in this
section you will learn about looping, which means telling Python to perform a task a number of times
rather than just once. In the following example, you will need to enter more than one line of Python.
When you press RETURN and go to the second line, you will notice that Python is waiting. It has not
immediately run what you have typed because it knows that you have not finished yet. The : character
at the end of the line means that there is more to do.

These extra tasks must each appear on an indented line. Therefore, in the following program, at the

start of the second line you’ll press TAB once and then type print (x). To get this two-line program
to actually run, press RETURN twice after the second line is entered.

This program has printed out the numbers between 1 and 9 rather than 1 and 10. The range
command has an exclusive end point—that it, it doesn’t include the last number in the range, but it
does include the first.

You can check this out by just taking the range bit of the program and asking it to show its values as

a list, like this:

Some of the punctuation here needs a little explaining. The parentheses are used to contain what are
called parameters. In this case, range has two parameters: from (1) and to (10), separated by a
comma.

The for in command has two parts. After the word for there must be a variable name. This
variable will be assigned a new value each time around the loop. Therefore, the first time it will be
1, the next time 2, and so on. After the word in, Python expects to see something that works out to be
a list of items. In this case, this is a list of the numbers between 1 and 9.

The print command also takes an argument that displays it in the Python Shell. Each time around

the loop, the next value of x will be printed out.

Simulating Dice

We’ll now build on what you just learned about loops to write a program that simulates throwing a
die 10 times.

To do this, you will need to know how to generate a random number. So, first let’s work out how

to do that. If you didn’t have this book, one way to find out how to generate a random number would

be to type random numbers python into your search engine and look for fragments of code to type

into the Python Shell. However, you do have this book, so here is what you need to write:

Try entering the second line a few times, and you will see that you are getting different random
numbers between 1 and 6.

The first line imports a library that tells Python how to generate numbers. You will learn much

more about libraries later in this book, but for now you just need to know that we have to issue this
command before we can start using the randint command that actually gives us a random number.

NOTE I am being quite liberal with the use of the word command here. Strictly speaking, items

such as randint are actually functions, not commands, but we will come to this later.
Now that you can make a single random number, you need to combine this with your knowledge of

loops to print off 10 random numbers at a time. This is getting beyond what can sensibly be typed into
the Python Shell, so we will use the IDLE Editor.

You can either type in the examples from the text here or download all the Python examples used in

the book from the book’s website (www.raspberrypibook.com) . Each programming example has a
number. Thus, this program will be contained in the file 3_l_dice.py, which can be loaded into the
IDLE Editor.

At this stage, it is worth typing in the examples to help the concepts sink in. Open up a new IDLE

Editor window, type the following into it, and then save your work:

The first line begins with a # character. This indicates that the entire line is not program code at
all, but just a comment to anyone looking at the program. Comments like this provide a useful way of
adding extra information about a program into the program file, without interfering with the operation
of the program. In other words, Python will ignore any line that starts with #.

Now, from the Run menu, select Run Module. The result should look something like Figure 3-6,

where you can see the output in the Python Shell behind the Editor window.

http://www.raspberrypibook.com/

Figure 3-6 The dice simulation

If

Now it’s time to spice up the dice program so that two dice are thrown, and if we get a total of 7 or
11, or any double, we will print a message after the throw. Type or load the following program into
the IDLE Editor:

When you run this program, you should see something like this:

The first thing to notice about this program is that now two random numbers between 1 and 6 are
generated. One for each of the dice. A new variable, total, is assigned to the sum of the two throws.

Next comes the interesting bit: the if command. The if command is immediately followed by a
condition (in the first case, total = = 7). There is then a colon (:), and the subsequent lines will
only be executed by Python if the condition is true. At first sight, you might think there is a mistake in
the condition because it uses == rather than =. The double equal sign is used when comparing items to
see whether they are equal, whereas the single equal sign is used when assigning a value to a

variable.

The second if is not tabbed in, so it will be executed regardless of whether the first if is true.
This second if is just like the first, except that we are looking for a total of 11. The final if is a little
different because it compares two variables (throw_1 and throw_2) to see if they are the same,
indicating that a double has been thrown.

Now, the next time you go to play Monopoly and find that the dice are missing, you know what to

do: Just boot up your Raspberry Pi and write a little program.
Comparisons
To test to see whether two values are the same, we use ==. This is called a comparison operator.

The comparison operators we can use are shown in Table 3-2.

Table 3-2 Comparison Operators

You can do some experimenting with these comparison operators in the Python Shell. Here’s an
example:

In this case, we have basically said to Python, “Is 10 greater than 9?” Python has replied, “True.”
Now let’s ask Python whether 10 is less than 9:

Being Logical

You cannot fault the logic. When Python tells us “True” or “False,” it is not just displaying a message
to us. True and False are special values called logical values. Any condition we use with an if
statement will be turned into a logical value by Python when it is deciding whether or not to perform
the next line.

These logical values can be combined rather like the way you perform arithmetic operations like

plus and minus. It does not make sense to add True and True, but it does make sense sometimes to
say True AND True.

As an example, if we wanted to display a message every time the total throw of our dice was

between 5 and 9, we could write something like this:

As well as and, we can use or. We can also use not to turn True into False, and vice versa, as
shown here:

Thus, another way of saying the same thing would be to write the following:

Exercise

Try incorporating the preceding test into the dice program. While you are at it, add two more if
statements: one that prints “Good Throw!” if the throw is higher than 10 and one that prints
“Unlucky!” if the throw is less than 4. Try your program out. If you get stuck, you can look at the
solution in the file 3_3_double_dice_solution.py.
Else

In the preceding example, you will see that some of the possible throws can be followed by more than
one message. Any of the if lines could print an extra message if the condition is true. Sometimes you
want a slightly different type of logic, so that if the condition is true, you do one thing and otherwise
you do another. In Python, you use else to accomplish this:

In this case, only one of the two messages will ever be printed.

Another variation on this is elif, which is short for else if. Thus, we could expand the previous
example so that there are three mutually exclusive clauses, like this:

While

Another command for looping is while, which works a little differently than for. The command
while looks a bit like an if command in that it is immediately followed by a condition. In this case,
the condition is for staying in the loop. In other words, the code inside the loop will be executed until
the condition is no longer true. This means that you have to be careful to ensure that the condition will
at some point be false; otherwise, the loop will continue forever and your program will appear to
have hung.

To illustrate the use of while, the dice program has been modified so that it just keeps on rolling

until a double 6 is rolled:

This program will work. Try it out. However, it is a little bigger than it should be. We are having
to repeat the following lines twice—once before the loop starts and once inside the loop:

A well-known principle in programming is DRY (Don’t Repeat Yourself). Although it’s not a
concern in a little program like this, as programs get more complex, you need to avoid the situation
where the same code is used in more than one place, which makes the programs difficult to maintain.

We can use the command break to shorten the code and make it a bit “drier.” When Python
encounters the command break, it breaks out of the loop. Here is the program again, this time using

break:

The condition for staying in the loop is permanently set to True. The loop will continue until it gets
to break, which will only happen after throwing a double 6.

Summary

You should now be happy to play with IDLE, trying things out in the Python Shell. I strongly
recommend that you try altering some of the examples from this chapter, changing the code and seeing
how that affects what the programs do.

In the next chapter, we will move on past numbers to look at some of the other types of data you

can work with in Python.

4
Strings, Lists, and Dictionaries

This chapter could have had “and Functions” added to its title, but it was already long enough. In

this chapter, you will first explore and play with the various ways of representing data and adding
some structure to your programs in Python. You will then put everything you learned together into the
simple game of Hangman, where you have to guess a word chosen at random by asking whether that
word contains a particular letter.

The chapter ends with a reference section that tells you all you need to know about the most useful
built-in functions for math, strings, lists, and dictionaries.

String Theory

No, this is not the Physics kind of String Theory. In programming, a string is a sequence of characters
you use in your program. In Python, to make a variable that contains a string, you can just use the
regular = operator to make the assignment, but rather than assigning the variable a number value, you
assign it a string value by enclosing that value in single quotes, like this:

If you want to see the contents of a variable, you can do so either by entering just the variable name
into the Python Shell or by using the print command, just as we did with variables that contain a
number:

There is a subtle difference between the results of each of these methods. If you just enter the
variable name, Python puts single quotes around it so that you can tell it is a string. On the other hand,
when you use print, Python just prints the value.

NOTE You can also use double quotes to define a string, but the convention is to use single

quotes unless you have a reason for using double quotes (for example, if the string you want to
create has an apostrophe in it).

You can find out how many characters a string has in it by doing this:

You can find the character at a particular place in the string like so:

Two things to notice here: first, the use of square brackets rather than the parentheses that are used
for parameters and, second, that the positions start at 0 and not 1. To find the first letter of the string,
you need to do the following:

If you put a number in that is too big for the length of the string, you will see this:

This is an error, and it’s Python’s way of telling us that we have done something wrong. More

specifically, the “string index out of range” part of the message tells us that we have tried to access
something that we can’t. In this case, that’s element 100 of a string that is only 24 characters long.

You can chop lumps out of a big string into a smaller string, like this:

The first number within the brackets is the starting position for the string we want to chop out, and
the second number is not, as you might expect, the position of the last character you want, but rather
the last character plus 1.

As an experiment, try and chop out the word raspberry from the title. If you do not specify the

second number, it will default to the end of the string:

Similarly, if you do not specify the first number, it defaults to 0.

Finally, you can also join strings together by using + operator. Here’s an example:

Lists

Earlier in the book when you were experimenting with numbers, a variable could only hold a single
number. Sometimes, however, it is useful for a variable to hold a list of numbers or strings, or a
mixture of both—or even a list of lists. Figure 4-1 will help you to visualize what is going on when a
variable is a list.

Figure 4-1 An array

Lists behave rather like strings. After all, a string is a list of characters. The following example
shows you how to make a list. Notice how len works on lists as well as strings:

Square brackets are used to indicate a list, and just like with strings we can use square brackets to
find an individual element of a list or to make a shorter list from a bigger one:

What’s more, you can use = to assign a new value to one of the items in the list, like this:

This changes the first element of the list (element 0) from 123 to just 1.
As with strings, you can join lists together using the + operator:

If you want to sort the list, you can do this:

To remove an item from a list, you use the command pop, as shown next. If you do not specify an
argument to pop, it will just remove the last element of the list and return it.

If you specify a number as the argument to pop, that is the position of the element to be removed.

Here’s an example:

As well as removing items from a list, you can also insert an item into the list at a particular
position. The function insert takes two arguments. The first is the position before which to insert,
and the second argument is the item to insert.

When you want to find out how long a list is, you use len(numbers), but when you want to sort the
list or “pop” an element off the list, you put a dot after the variable containing the list and then issue
the command, like this:

These two different styles are a result of something called object orientation, which we will
discuss in the next chapter.

Lists can be made into quite complex structures that contain other lists and a mixture of different

types—numbers, strings, and logical values. Figure 4-2 shows the list structure that results from the
following line of code:

Figure 4-2 A complex list

You can combine what you know about lists with for loops and write a short program that creates
a list and then prints out each element of the list on a separate line:

Here’s the output of this program:

Functions

When you are writing small programs like the ones we have been writing so far, they only really
perform one function, so there is little need to break them up. It is fairly easy to see what they are
trying to achieve. As programs get larger, however, things get more complicated and it becomes
necessary to break up your programs into units called functions. When we get even further into
programming, we will look at better ways still of structuring our programs using classes and modules.

Many of the things I have been referring to as commands are actually functions that are built into
Python. Examples of this are range and print.

The biggest problem in software development of any sort is managing complexity. The best
programmers write software that is easy to look at and understand and requires very little in the way
of extra explanation. Functions are a key tool in creating easy-to-understand programs that can be
changed without difficulty or risk of the whole thing falling into a crumpled mess.

A function is a little like a program within a program. We can use it to wrap up a sequence of

commands we want to do. A function that we define can be called from anywhere in our program and
will contain its own variables and its own list of commands. When the commands have been run, we
are returned to just after wherever it was in the code we called the function in the first place.

As an example, let’s create a function that simply takes a string as an argument and adds the word

please to the end of it. Load the following file—or even better, type it in to a new Editor window—
and then run it to see what happens:

The function starts with the keyword def. This is followed by the name of the function, which
follows the same naming conventions as variables. After that come the parameters inside parentheses
and separated by commas if there are more than one. The first line must end with a colon.

Inside the function, we are using a new variable called polite_sentence that takes the parameter

passed into the function and adds “ please” to it (including the leading space). This variable can only
be used from inside the function.

The last line of the function is a return command. This specifies what value the function should

give back to the code that called it. This is just like trigonometric functions such as sin, where you
pass in an angle and get back a number. In this case, what is returned is the value in the variable
polite_sentence.

To use the function, we just specify its name and supply it with the appropriate arguments. A return

value is not mandatory, and some functions will just do something rather than calculate something.
For example, we could write a rather pointless function that prints “Hello” a specified number of
times:

This covers the basics of what we will need to do to write our game of Hangman. Although you’ll
need to learn some other things, we can come back to these later.

Hangman

Hangman is a word-guessing game, usually played with pen and paper. One player chooses a word
and draws a dash for each letter of the word, and the other player has to guess the word. They guess a
letter at a time. If the letter guessed is not in the word, they lose a life and part of the hangman’s
scaffold is drawn. If the letter is in the word, all occurrences of the letter are shown by replacing the
dashes with the letters.

We are going to let Python think of a word and we will have to guess what it is. Rather than draw a
scaffold, Python is just going to tell us how many lives we have left.

You are going to start with how to give Python a list of words to chose from. This sounds like a job
for a list of strings:

The next thing the program needs to do is to pick one of those words at random. We can write a
function that does that and test it on its own:

Run this program a few times to check that it is picking different words from the list.

This is a good start, but it needs to fit into the structure of the game. The next thing to do is to define
a new variable called lives_remaining. This will be an integer that we can start off at 14 and
decrease by 1 every time a wrong guess is made. This type of variable is called a global variable,
because unlike variables defined in functions, we can access it from anywhere in the program.

As well as a new variable, we are also going to write a function called play that controls the

game. We know what play should do, we just don’t have all the details yet. Therefore, we can write
the function play and make up other functions that it will call, such as get_guess and
process_guess, as well as use the function pick_a_word we’ve just written. Here it is:

A game of Hangman first involves picking a word. There is then a loop that continues until either
the word is guessed (process_guess returns True) or lives_remaining has been reduced to zero.
Each time around the loop, we ask the user for another guess.

We cannot run this at the moment because the functions get_guess and process_guess don’t exist

yet. However, we can write what are called stubs for them that will at least let us try out our play
function. Stubs are just versions of functions that don’t do much; they are stand-ins for when the full
versions of the functions are written.

The stub for get_guess just simulates the player always guessing the letter a, and the stub for
process_guess always assumes that the player guessed wrong and, thus, decreases
lives_remaining by 1 and returns False to indicate that they didn’t win.

The stub for process_guess is a bit more complicated. The first line tells Python that the
lives_remaining variable is the global variable of that name. Without that line, Python assumes that
it is a new variable local to the function. The stub then reduces the lives remaining by 1 and returns
False to indicate that the user has not won yet. Eventually, we will put in checks to see if the player
has guessed all the letters or the whole word.

Open the file 4_5_hangman_play.py and run it. You will get a result similar to this:

What happened here is that we have whizzed through all 14 guesses very quickly, and Python has
told us what the word was and that we have lost.

All we need to do to complete the program is to replace the stub functions with real functions,

starting with get_guess, shown here:

The first thing get_guess does is to tell the player the current state of their efforts at guessing
(something like “c--c--n”) using the function print_word. This is going to be another stub function
for now. The player is then told how many lives they have left. Note that because we want to append
a number (lives_remaining) after the string Lives Remaining:, the number variable must be
converted into a string using the built-in str function.

The built-in function input prints the message in its parameter as a prompt and then returns

anything that the user types. Note that in Python 2, the input function was called raw_input.
Therefore, if you decide to use Python 2, change this function to raw_input.

Finally, the get_guess function returns whatever the user has typed.

The stub function print_word just reminds us that we have something else to write later:

Open the file 4_6_hangman_get_guess.py and run it. You will get a result similar to this:

Enter guesses until all your lives are gone to verify that you get the “losing” message.

Next, we can create the proper version of print_word. This function needs to display something
like “c--c--n,” so it needs to know which letters the player has guessed and which they haven’t. To
do this, it uses a new global variable (this time a string) that contains all the guessed letters. Every
time a letter is guessed, it gets added to this string:

Here is the function itself:

This function starts with an empty string and then steps through each letter in the word. If the letter
is one of the letters that the player has already guessed, it is added to display_word; otherwise, a
hyphen (-) is added. The built-in function find is used to check whether the letter is in the
guessed_letters. The find function returns -1 if the letter is not there; otherwise, it returns the
position of the letter. All we really care about is whether or not it is there, so we just check that the
result is greater than -1. Finally, the word is printed out.

Currently, every time process_guess is called, it doesn’t do anything with the guess because it’s
still a stub. We can make it a bit less of a stub by having it add the guessed letter to

guessed_letters, like so:

Open the file 4_7_hangman_print_word.py and run it. You will get a result something like this:

It’s starting to look like the proper game now. However, there is still the stub for process_guess

to fill out. We will do that next:

When the player enters a guess, they have two choices: They can either enter a single-letter guess
or attempt to guess the whole word. In this method, we just decide which type of guess it is and call
either whole_word_ guess or single_letter_guess. Because these functions are both pretty
straightforward, we will implement them directly rather than as stubs:

The function whole_word_guess is actually easier than the single_ letter_guess function:

All we have to do is compare the guess and the actual word to see if they are the same when they
are both converted to lowercase. If they are not the same, a life is lost. The function returns True if
the guess was correct; otherwise, it returns False.

That’s the complete program. Open up 4_8_hangman_full.py in the IDLE Editor and run it. The full

listing is shown here for convenience:

The game as it stands has a few limitations. First, it is case sensitive, so you have to enter your

guesses in lowercase, the same as the words in the words array. Second, if you accidentally type aa

instead of a as a guess, it will treat this as a whole-word guess, even though it is too short to be the

whole word. The game should probably spot this and only consider guesses the same length as the

secret word to be whole-word guesses.

As an exercise, you might like to try and correct these problems. Hint: For the case-sensitivity
problem, experiment with the built-in function lower. You can look at a corrected version in the file
4_8_hangman_full_solution.py.

Dictionaries

Lists are great when you want to access your data starting at the beginning and working your way
through, but they can be slow and inefficient when they get large and you have a lot of data to trawl
through (for example, looking for a particular entry). It’s a bit like having a book with no index or
table of contents. To find what you want, you have to read through the whole thing.

Dictionaries, as you might guess, provide a more efficient means of accessing a data structure when

you want to go straight to an item of interest. When you use a dictionary, you associate a value with a
key. Whenever you want that value, you ask for it using the key. It’s a little bit like how a variable
name has a value associated with it; however, the difference is that with a dictionary, the keys and
values are created while the program is running.

Let’s look at an example:

This example is concerned with recording the number of eggs each of my chickens is currently
laying. Associated with each chicken’s name is a number of eggs per week. When we want to retrieve
the value for one of the hens (let’s say Penny), we use that name in square brackets instead of the
index number that we would use with a list. We can use the same syntax in assignments to change one
of the values.

For example, if Bernadette were to a lay an egg, we could update our records by doing this:

You may have noticed that when the dictionary is printed, the items in it are not in the same order
as we defined them. The dictionary does not keep track of the order in which items were defined.
Also note that although we have used a string as the key and a number as the value, the key could be a
string, a number, or a tuple (see the next section), but the value could be anything, including a list or
another dictionary.

Tuples

On the face of it, tuples look just like lists, but without the square brackets. Therefore, we can define
and access a tuple like this:

However, if we try to change an element of a tuple, we get an error message, like this one:

The reason for this error message is that tuples are immutable, meaning that you cannot change
them. Strings and numbers are the same. Although you can change a variable to refer to a different
string, number, or tuple, you cannot change the number itself. On the other hand, if the variable
references a list, you could alter that list by adding, removing, or changing elements in it.

So, if a tuple is just a list that you cannot do much with, you might be wondering why you would

want to use one. The answer is, tuples provide a useful way of creating a temporary collection of
items. Python lets you do a couple of next tricks using tuples, as described in the next two
subsections.
Multiple Assignment

To assign a value to a variable, you just use = operator, like this:

Python also lets you do multiple assignments in a single line, like this:

Multiple Return Values

Sometimes in a function, you want to return more than one value at a time. As an example, imagine a
function that takes a list of numbers and returns the minimum and the maximum. Here is such an
example:

This method of finding the minimum and maximum is not terribly efficient, but it is a simple
example. The list is sorted and then we take the first and last numbers. Note that numbers[-1] returns
the last number because when you supply a negative index to an array or string, Python counts
backward from the end of the list or string. Therefore, the position -1 indicates the last element, -2
the second to last, and so on.

Exceptions

Python uses exceptions to flag that something has gone wrong in your program. Errors can occur in
any number of ways while your program is running. A common way we have already discussed is
when you try to access an element of a list or string that is outside of the allowed range. Here’s an
example:

If someone gets an error message like this while they are using your program, they will find it
confusing to say the least. Therefore, Python provides a mechanism for intercepting such errors and
allowing you to handle them in your own way:

We cover exceptions again in the next chapter, where you will learn about the hierarchy of the
different types of error that can be caught.

Summary of Functions

This chapter was written to get you up to speed with the most important features of Python as quickly
as possible. By necessity, we have glossed over a few things and left a few things out. Therefore, this
section provides a reference of some of the key features and functions available for the main types we
have discussed. Treat it as a resource you can refer back to as you progress though the book, and be
sure to try out some of the functions to see how they work. There is no need to go through everything
in this section—just know that it is here when you need it. Remember, the Python Shell is your friend.

For full details of everything in Python, refer to http://docs.python.org/py3k.
Numbers

Table 4-1 shows some of the functions you can use with numbers.

http://docs.python.org/py3k

Table 4-1 Number Functions
Strings

String constants can be enclosed either with single quotes (most common) or with double quotes.
Double quotes are useful if you want to include single quotes in the string, like this:

On some occasions you’ll want to include special characters such as end-of-lines and tabs into a
string. To do this, you use what are called escape characters, which begin with a backslash (\)
character. Here are the only ones you are likely to need:

• \t Tab character
• \n Newline character

Table 4-2 shows some of the functions you can use with strings.

Table 4-2 String Functions
Lists

We have already looked at most of the features of lists. Table 4-3 summarizes these features.

Table 4-3 List Functions
Dictionaries

Table 4-4 details a few things about dictionaries that you should know.

Table 4-4 Dictionary Functions
Type Conversions

We have already discussed the situation where we want to convert a number into a string so that we
can append it to another string. Python contains some built-in functions for converting items of one
type to another, as detailed in Table 4-5.

Table 4-5 Type Conversions

Summary

Many things in Python you will discover gradually. Therefore, do not despair at the thought of
learning all these commands. Doing so is really not necessary because you can always search for
Python commands or look them up.

In the next chapter, we take the next step and see how Python manages object orientation.

5
Modules, Classes, and Methods

In this chapter, we discuss how to make and use our own modules, like the random module we used

in Chapter 3. We also discuss how Python implements object orientation, which allows programs to
be structured into classes, each responsible for its own behavior. This helps to keep a check on the
complexity of our programs and generally makes them easier to manage. The main mechanisms for
doing this are classes and methods. You have already used built-in classes and methods in earlier
chapters without necessarily knowing it.

Modules

Most computer languages have a concept like modules that allows you to create a group of functions
that are in a convenient form for others to use—or even for yourself to use on different projects.

Python does this grouping of functions in a very simple and elegant way. Essentially, any file with

Python code in it can be thought of as a module with the same name as the file. However, before we
get into writing our own modules, let’s look at how we use the modules already installed with Python.
Using Modules
When we used the random module previously, we did something like this:

The first thing we do here is tell Python that we want to use the random module by using the
import command. Somewhere in the Python installation is a file called random.py that contains a
randint function as well as some other functions.

With so many modules available to us, there is a real danger that different modules might have

functions with the same name. In such a case, how would Python know which one to use? Fortunately,
we do not have to worry about this happening because we have imported the module, and none of the
functions in the module are visible unless we prepend the module name and then a dot onto the front
of the function name. Try omitting the module name, like this:

Having to put the module name in front of every call to a function that’s used a lot can get tedious.

Fortunately, we can make this a little easier by adding to the import command as follows:

This gives the module a local name within our program of just r rather than random, which saves
us a bit of typing.

If you are certain a function you want to use from a library is not going to conflict with anything in

your program, you can take things a stage further, as follows:

To go even further, you can import everything from the module in one fell swoop. Unless you know

exactly what is in the module, however, this is not normally a good idea, but you can do it. Here’s
how:

In this case, the asterisk (*) means “everything.”
Useful Python Libraries
So far we have used the random module, but other modules are included in Python. These modules

are often called Python’s standard library. There are too many of these modules to list in full.
However, you can always find a complete list of Python modules at
http://docs.python.org/release/3.1.5/library/index.html. Here are some of the most useful modules you
should take a look at:

• string

• datetime

String utilities

For manipulating dates and times
• math Math functions (sin, cos, and so on)
• pickle For saving and restoring data structures on file (see Chapter 6)
• urllib.request For reading web pages (see Chapter 6)
• tkinter For creating graphical user interfaces (see Chapter 7)

Installing New Modules

In addition to the standard library modules, thousands of modules have been contributed by the Python
community. One very popular module is pygame, which we will use in Chapter 8. It’s often available
as a binary package, so you can install it by typing something like this:

For many modules, however, this is not the case, and you have to go through a bit more effort to
install them.

Any module good enough to use will be packaged in the standard Python way. This means that to

install it, you need to download a compressed file containing a directory for the module. Let’s use the
RPi.GPIO module we will use in Chapter 11 as an example. To install this module, you first go to the
module’s website, find the Downloads section, and then fetch the archive file. This is shown in
Figure 5-1. The next step is to save the file to a convenient directory (for this example, use the Python
directory we created in Chapter 3).

Figure 5-1 Downloading the RPi.GPIO module

Once the file has been saved, open LXTerminal and use cd to get to the Python directory, like so:

Next, you need to extract the directory from the archive by entering the following command:

http://docs.python.org/release/3.1.5/library/index.html

Now that you have a new folder for the module, you need to “cd” into it and then run the install
command. However, it is always worth checking the instructions first to see if there’s anything else
you need to do. To see the instructions, type more INSTALL.txt.

Good thing you checked! The instructions state that you need to do the following:

Finally, you are ready to run the module installer itself:

Once the module is installed, you will be able to import it from the Python Shell.

Object Orientation

Object orientation has much in common with modules. It shares the same goals of trying to group
related items together so that they are easy to maintain and find. As the name suggests, object
orientation is about objects. We have been unobtrusively using objects already. A string is an object,
for example. Thus, when we type

We are telling the string 'abc' that we want a copy of it, but in uppercase. In object-oriented
terms, abc is an instance of the built-in class str and upper is a method on the class str.

We can actually find out the class of an object, as shown here (note double underscores before and

after the word class):

Defining Classes

That’s enough of other people’s classes; let’s make some of our own. We are going to start by
creating a class that does the job of converting measurements from one unit to another by multiplying
a value by a scale factor.

We will give the class the catchy name ScaleConverter. Here is the listing for the whole class,

plus a few lines of code to test it:

This requires some explanation. The first line is fairly obvious: It states that we are beginning the
definition of a class called ScaleConverter. The colon (:) on the end indicates that all that follows
is part of the class definition until we get back to an indent level of the left margin again.

Inside the ScaleConverter, we can see what look like three function definitions. These functions

belong to the class; they cannot be used except via an instance of the class. These kinds of functions
that belong to a class are called methods.

The first method, init , looks a bit strange—its name has two underscore characters on either

side. When Python is creating a new instance of a class, it automatically calls the method init .
The number of parameters that init should have depends on how many parameters are supplied
when an instance of the class is made. To unravel that, we need to look at this line at the end of the
file:

This line creates a new instance of the ScaleConverter, specifying what the units being converted
from and to are, as well as the scaling factor. The init method must have all these parameters,
but it must also have a parameter called self as the first parameter:

The parameter self refers to the object itself. Now, looking at the body of the init method,
we see some assignments:

Each of these assignments creates a variable that belongs to the object and has its initial value set
from the parameters passed in to init .

To recap, when we create a new ScaleConverter by typing something like

Python creates a new instance of ScaleConverter and assigns the values 'inches', 'mm', and 25 to
its three variables: self.units_from, self.units_to, and self.factor.

The term encapsulation is often used in discussions of classes. It is the job of a class to

encapsulate everything to do with the class. That means storing data (like the three variables) and
things that you might want to do with the data in the form of the description and convert methods.

The first of these (description) takes the information that the Converter knows about its units
and creates a string that describes it. As with init , all methods must have a first parameter of
self. The method will probably need it to access the data of the class to which it belongs.

Try it yourself by running program 05_01_converter.py and then typing the following in the Python
Shell:

The convert method has two parameters: the mandatory self parameter and a parameter called

value. The method simply returns the result of multiplying the value passed in by self.scale:

Inheritance

The ScaleConverter class is okay for units of length and things like that; however, it would not
work for something like converting temperature from degrees Celsius (C) to degrees Fahrenheit (F).
The formula for this is F = C * 1.8 + 32. There is both a scale factor (1.8) and an offset (32).

Let’s create a class called ScaleAndOffsetConverter that is just like ScaleConverter, but with

a factor as well as an offset. One way to do this would simply be to copy the whole of the code
for ScaleConverter and change it a bit by adding the extra variable. It might, in fact, look something
like this:

Assuming we want both types of converters in the program we are writing, then this is a bad way
of doing it. It’s bad because we are repeating code. The description method is actually identical,
and init is almost the same. A much better way is to use something called inheritance.

The idea behind inheritance in classes is that when you want a specialized version of a class that

already exists, you inherit all the parent class’s variables and methods and just add new ones or
override the ones that are different. Figure 5-2 shows a class diagram for the two classes, indicating
how ScaleAndOffsetConverter inherits from ScaleConverter, adds a new variable (offset),
and overrides the method convert (because it will work a bit differently).

Figure 5-2 An example of using inheritance

Here is the class definition for ScaleAndOffsetConverter using inheritance:

The first thing to notice is that the class definition for ScaleAndOffsetConverter has
ScaleConverter in parentheses immediately after it. That is how you specify the parent class for a
class.

The init method for the new “subclass” of ScaleConverter first invokes the init

method of ScaleConverter before defining the new variable offset. The convert method will
override the convert method in the parent class because we need to add on the offset for this kind of
converter. You can run and experiment with the two classes together by running
05_03_converters_final.py:

It’s a simple matter to convert these two classes into a module that we can use in other programs.
In fact, we will use this module in Chapter 7, where we attach a graphical user interface to it.

To turn this file into a module, we should first take the test code off the end of it and then give the
file a more sensible name. Let’s call it converters.py. You will find this file in the downloads for this
book. The module must be in the same directory as any program that wants to use it.

To use the module now, just do this:

Summary

Lots of modules are available for Python, and some are specifically for the Raspberry Pi, such as the
RPi.GPIO library for controlling the GPIO pins. As you work through this book, you will encounter
various modules. You will also find that as the programs you write get more complex, the benefits of
an object-oriented approach to designing and coding your projects will keep everything more
manageable.

In the next chapter, we look at using files and the Internet.

6
Files and the Internet

Python makes it easy for your programs to use files and connect to the Internet. You can read data

from files, write data to files, and fetch content from the Internet. You can even check for new mail

and tweet—all from your program.

Files

When you run a Python program, any values you have in variables will be lost. Files provide a means
of making data more permanent.
Reading Files

Python makes reading the contents of a file extremely easy. As an example, we can convert the
Hangman program from Chapter 4 to read the list of words from a file rather than have them fixed in
the program.

First of all, start a new file in IDLE and put some words in it, one per line. Then save the file with

the name hangman_words.txt in the same directory as the Hangman program from Chapter 4
(04_08_hangman_full.py). Note that in the Save dialog you will have to change the file type to .txt
(see Figure 6-1).

Figure 6-1 Creating a text file in IDLE

Before we modify the Hangman program itself, we can just experiment with reading the file in the
Python console. Enter the following into the console:

Note that the Python console has a current directory of /home/pi, so the directory Python (or
wherever you saved the file) must be included.

Next enter the following into the Python console:

I told you it was easy! All we need to do to add this file to the Hangman program is replace the line

with the following lines:

The line f.close() has been added. You should always call the close command when you are
done with a file to free up operating system resources. Leaving a file open can lead to problems.

The full program is contained in the file 06_01_hangman_file.py, and a suitable list of animal

names can be found in the file hangman_words.txt. This program does nothing to check that the file
exists before trying to read it. So, if there file isn’t there, we get an error that looks something like
this:

To make this a bit more user friendly, the file-reading code needs to be inside a try command, like
this:

Python will try to open the file, but because the file is missing it will not be able to. Therefore, the
except part of the program will apply, and the more friendly message will be displayed. Because we
cannot do anything without a list of words to guess, there is no point in continuing, so the exit
command is used to quit.

In writing the error message, we have repeated the name of the file. Sticking strictly to the Don’t
Repeat Yourself (DRY) principle, the filename should be put in a variable, as shown next. That way,
if we decide to use a different file, we only have to change the code in one place.

A modified version of Hangman with this code in it can be found in the file
06_02_hangman_file_try.py.
Reading Big Files

The way we did things in the previous section is fine for a small file containing some words.
However, if we were reading a really huge file (say, several megabytes), then two things would
happen. First, it would take a significant amount of time for Python to read all the data. Second,
because all the data is read at once, at least as much memory as the file size would be used, and for
truly enormous files, that might result in Python running out of memory.

If you find yourself in the situation where you are reading a big file, you need to think about how

you are going to handle it. For example, if you were searching a file for a particular string, you could
just read one line of the file at a time, like this:

When the function readline gets to the last line of the file, it returns an empty string ('').
Otherwise, it returns the contents of the line, including the end-of-line character (\n). If it reads a
blank line that is actually just a gap between lines and not the end of the file, it will return just the
end-of-line character (\n). By the program only reading one line at a time, the memory being used is
only ever equivalent to one full line.

If the file is not broken into convenient lines, you can specify an argument in read that limits the

number of characters read. For example, the following will just read the first 20 characters of a file:

Writing Files

Writing files is almost as simple. When a file is opened, as well as specifying the name of the file to
open, you can also specify the mode in which to open the file. The mode is represented by a
character, and if no mode is specified it is assumed to be r for read. The modes are as follows:

• r (read).

• w (write) Replaces the contents of any existing file with that name.
• a (append) Appends anything to be written onto the end of an existing file.
• r+ Opens the file for both reading and writing (not often used).

To write a file, you open it with a second parameter of ' w', ' a', or ' r+'. Here’s an example:

The File System

Occasionally, you will need to do some file-system-type operations on files (moving them, copying
them, and so on). Python uses Linux to perform these actions, but provides a nice Python-style way of
doing them. Many of these functions are in the shutil (shell utility) package. There’s a number of
subtle variations on the basic copy and move features that deal with file permissions and metadata. In
this section, we just deal with the basic operations. You can refer to the official Python
documentation for any other functions (http://docs.python.org/release/3.l.5/library).

Here’s how to copy a file:

http://docs.python.org/release/3.l.5/library

To move a file, either to change its name or move it to a different directory:

This works on directories as well as files. If you want to copy an entire folder—including all its
contents and its content’s contents—you can use the function copytree. The rather dangerous function
rmtree, on the other hand, will recursively remove a directory and all its contents—exercise extreme
caution with this one!

The nicest way of finding out what is in a directory is via globbing. The package glob allows you

to create a list of files in a directory by specifying a wildcard (*). Here’s an example:

If you just want all the files in the folder, you could use this:

Pickling

Pickling involves saving the contents of a variable to a file in such a way that the file can be later
loaded to get the original value back. The most common reason for wanting to do this is to save data
between runs of a program. As an example, we can create a complex list containing another list and
various other data objects and then pickle it into a file called mylist.pickle, like so:

If you find the file and open it in an editor to have a look, you will see something cryptic that looks
like this:

That is to be expected; it is text, but it is not meant to be in human-readable form. To reconstruct a
pickle file into an object, here is what you do:

Internet

Most applications use the Internet in one way or another, even if it is just to check whether a new
version of the application is available to remind the user about. You interact with a web server by
sending HTTP (Hypertext Transfer Protocol) requests to it. The web server then sends a stream of

text back as a response. This text will be HTML (Hypertext Markup Language), the language used to
create web pages.

Try entering the following code into the Python console.

Note that you will need to execute the read line as soon as possible after opening the URL. What
you have done here is to send a web request to www.amazon.com, asking it to search on “raspberry
pi.” This has sent back the HTML for Amazon’s web page that would display (if you were using a
browser) the list of search results.

If you look carefully at the structure of this web page, you can see that you can use it to provide a

list of Raspberry Pi–related items found by Amazon. If you scroll around the text, you will find some
lines like these:

They key thing here is <div class="productTitle">. There is one instance of this before each
of the search results. (It helps to have the same web page open in a browser for comparison.) What
you want to do is copy out the actual title text. You could do this by finding the position of the text
productTitle, counting two > characters, and then taking the text from that position until the next <
character, like so:

http://www.amazon.com/

When you run this, you will mostly get a list of products. If you really get into this kind of thing,
then search for “Regular Expressions in Python” on the Internet. Regular expressions are almost a
language in their own right; they are used for doing complex searches and validations of text. They
are not easy to learn or use, but they can simplify tasks like this one.

What we have done here is called web scraping, and it is not ideal for a number of reasons. First

of all, organizations often do not like people “scraping” their web pages with automated programs.
Therefore, you may get a warning or even banned from some sites.

Second, this action is very dependent on the structure of the web page. One tiny change on the

website and everything could stop working. A much better approach is to look for an official web
service interface to the site. Rather than returning the data as HTML, these services return much more
easily processed data, often in XML or JSON format.

If you want to learn more about how to do this kind of thing, search the Internet for “web services

in Python.”
Summary

This chapter has given you the basics of how to use files and access web pages from Python. There is
actually a lot more to Python and the Internet, including accessing e-mail and other Internet protocols.
For more information on this, have a look at the Python documentation at
http://docs.python.org/release/3.1.5/library/internet.html.

http://docs.python.org/release/3.1.5/library/internet.html

7
Graphical User Interfaces

Everything we have done so far has been text based. In fact, our Hangman game would not have

looked out of place on a 1980s home computer. This chapter shows you how to create applications

with a proper graphical user interface (GUI).

Tkinter

Tkinter is the Python interface to the Tk GUI system. Tk is not specific to Python; there are interfaces
to it from many different languages, and it runs on pretty much any operating system, including Linux.
Tkinter comes with Python, so there is no need to install anything. It is also the most commonly used
tool for creating a GUI for Python.

Hello World

Tradition dictates that the first program you write with a new language or system should do something
trivial, just to show it works! This usually means making the program display a message of “Hello
World.” As you’ll recall, we already did this for Python back in Chapter 3, so I’ll make no apologies
for starting with this program:

Figure 7-1 shows the rather unimpressive application.

Figure 7-1 Hello World in Tkinter

You don’t need to worry about how all this works. You do, however, need to know that you must
assign a variable to the object Tk. Here, we call this variable root, which is a common convention.
We then create an instance of the class Label, whose first argument is root. This tells Tkinter that the
label belongs to it. The second argument specifies the text to display in the label. Finally, the method
pack is called on the label. This tells the label to pack itself into the space available. The method
pack controls the layout of the items in the window. Shortly, we will use an alternative type of layout
for the components in a grid.

Temperature Converter

To get started with Tkinter, you’ll gradually build up a simple application that provides a GUI for
temperature conversion (see Figure 7-2) . This application will use the converter module we
created in Chapter 5 to do the calculation.

Figure 7-2 A temperature conversion application

Our Hello World application, despite being simple, is not well structured and would not lend itself

well to a more complex example. It is normal when building a GUI with Tkinter to use a class to
represent each application window. Therefore, our first step is to make a framework in which to slot
the application, starting with a window with the title “Temp Converter” and a single label:

We have added a class to the program called App. It has an init method that is used when a
new instance of App is created in the following line:

We pass in the Tk root object to init where the user interface is constructed.

As with the Hello World example, we are using a Label, but this time rather than adding the label
to the root Tk object, we add the label to a Frame object that contains the label and other items that
will eventually make up the window for our application. The structure of the user interface is shown
in Figure 7-3. Eventually, it will have all the elements shown.

Figure 7-3 Structure of the user interface

The frame is “packed” into the root, but this time when we add the label, we use the method grid
instead of pack. This allows us to specify a grid layout for the parts of our user interface. The field
goes at position 0, 0 of the grid, and the button object that is created on the subsequent line is put on
the second row of the grid (row 1). The button definition also specifies a “command” to be run when

the button is clicked. At the moment, this is just a stub that prints the message “Not implemented.”
The function wm_title sets the title of the window. Figure 7-4 shows what the basic user interface

looks like at this point.

Figure 7-4 The basic user interface for the Temp Converter application

The next step is to fill in the rest of the user interface. We need an “entry” into which a value for
degrees C can be entered and two more labels. We need one permanent label that just reads “deg F”
and a label to the right of it where the converted temperature will be displayed.

Tkinter has a special way of linking fields on the user interface with values. Therefore, when we

need to get or set the value entered or displayed on a label or entry, we create an instance of a special
variable object. This comes in various flavors, and the most common is StringVar. However, because
we are entering and displaying numbers, we will use DoubleVar. Double means a double-precision
floating-point number. This is just like a float, but more precise.

After we add in the rest of the user interface controls and the variables to interact with them, the

program will look like this:

The first DoubleVar (c_var) is assigned to the entry by specifying a textvariable property for it.
This means that the entry will display what is in that DoubleVar, and if the value in the DoubleVar is
changed, the field display will automatically update to show the new value. Also, when the user types
something in the entry field, the value in the DoubleVar will change. Note that a new label of “deg F”
has also been added.

The second DoubleVar is linked to another label that will eventually display the result of the

calculation. We have added another attribute to the grid command that lays out the button. Because
we specify columnspan=2, the button will stretch across both columns.

If you run the program, it will display the final user interface, but when you click the Convert

button, the message “Not Implemented” will be written to the Python console.

The last step is to replace the stubbed-out “convert” method with a real method that uses the
converters module from Chapter 5. To do this, we need to import the module. In order to reduce
how much we need to type, we will import everything, as follows:

For the sake of efficiency, it is better if we create a single “converter” during init and just
use the same one every time the button is clicked. Therefore, we create a variable called
self.t_conv to reference the convertor. The convert method then just becomes this:

Here is the full listing of the program:

Other GUI Widgets

In the temperature converter, we just used text fields (class Entry) and labels (class Label). As you
would expect, you can build lots of other user interface controls into your application. Figure 7-5
shows the main screen of a “kitchen sink” application that illustrates most of the controls you can use
in Tkinter. This program is available as 07_05_kitchen_sink.py.

Figure 7-5 A “kitchen sink” application
Checkbutton

The Checkbox widget (first column, second row of Figure 7-5) is created like this:

This line of code just creates a Checkbutton with a label next to it. If we have gone to the effort of
placing a check box on the window, we’ll also want a way of finding out whether or not it is checked.

The way to do this is to use a special “variable” like we did in the temperature converter example.
In the following example, we use a StringVar, but if the values of onvalue and offvalue were

numbers, we could use an IntVar instead.

Listbox

To display a list of items from which one or multiple items can be selected, a Listbox is used (refer to
the center of Figure 7-5). Here’s an example:

In this case, it just displays a list of colors. Each string has to be added to the list individually. The
word END indicates that the item should go at the end of the list.

You can control the way selections are made on the Listbox using the selectmode property, which
can be set to one of the following:

• SINGLE Only one selection at a time.

• BROWSE Similar to SINGLE, but allows selection using the mouse. This appears to be
indistinguishable from SINGLE in Tkinter on the Pi.

• MULTIPLE SHIFT-click to select more than one row.
• EXTENDED Like MULTIPLE, but also allows the CTRL-SHIFT-click selection of ranges.

Unlike with other widgets that use StringVar or some other type of special variable to get values in
and out, to find out which items of the Listbox are selected, you have to ask it using the method
curselection. This returns a collection of selection indexes. Thus, if the first, second, and fourth
items in the list are selected, you will get a list like this:

When selectmode is SINGLE, you still get a list back, but with just one value in it.
Spinbox

Spinboxes provide an alternative way of making a single selection from a list:

The get method returns the currently displayed item in the Spinbox, not its selection index.

Layouts

Laying out the different parts of your application so that everything looks good, even when you resize
the window, is one of the most tricky parts of building a GUI.

You will often find yourself putting one kind of layout inside another. For example, the overall

shape of the “kitchen sink” application is a 3×3 grid, but within that grid is another frame for the two
radio buttons:

This approach is quite common, and it is a good idea to sketch out the layout of your controllers on
paper before you start writing the code.

One particular problem you will encounter when creating a GUI is controlling what happens when

the window is resized. You will normally want to keep some widgets in the same place and at the
same size, while allowing other widgets to expand.

As an example of this, we can build a simple window like the one shown in Figure 7-6, which has

a Listbox (on the left) that stays the same size and an expandable message area (on the right) that
expands as the window is resized.

Figure 7-6 An example of resizing a window

The code for this is shown here:

The key to understanding such layouts is the use of the sticky attributes of the components to
decide which walls of their grid cell they should stick to. To control which of the columns and rows
expand when the window is resized, you use the columnconfigure and rowconfigure commands.
Figure 7-7 shows the arrangement of GUI components that make up this window. The lines indicate
where the edge of a user interface item is required to “stick” to its containing wall.

Figure 7-7 Layout for the resizing window example

Let’s go through the code for this example so that things start to make sense. First, the line

ensures that the frame will fill the enclosing root window so that if the root window changes in size,
so will the frame.

Having created the Listbox, we add it to the frame’s grid layout using the following line:

This specifies that the Listbox should go in position row 0, column 0, but then the sticky attribute
says that the west, east, north, and south sides of the Listbox should stay connected to the enclosing
grid. The constants W, E, N, and S are numeric constants that can be added together in any order. The
Text widget is added to the frame’s grid in just the same way, and its content is initialized to the word
word repeated 100 times.

The final part to the puzzle is getting the resizing behavior we want for a text area that expands to
the right and a list area that doesn’t. To do this, we use the columnconfigure and rowconfigure

methods:

By default, rows and columns do not expand at all when their enclosing user interface element
expands. We do not want column 0 to expand, so we can leave that alone. However, we do want
column 1 to expand to the right, and we want row 0 (the only row) to be able to expand downward.
We do this by giving them a “weight” using the columnconfigure and rowconfigure methods. If,
for example, we had multiple columns that we want to expand evenly, we would give them the same
weight (typically 1). If, however, we want one of the columns to expand at twice the rate of the other,
we would give it twice the weight. In this case, we only have one column and one row that we need
expanding, so they can both be given a weight of 1.
Scrollbar

If you shrink down the window for the program 07_06_resizing.py, you will notice that there’s no
scrollbar to access text that’s hidden. You can still get to the text, but clearly a scrollbar would help.

Scrollbars are widgets in their own right, and the trick for making them work with something like a
Text, Message, or Listbox widget is to lay them out next to each other and then link them together.

Figure 7-8 shows a Text widget with a scrollbar.

Figure 7-8 Scrolling a Text widget

The code for this is as follows:

In this example, we use the pack layout, positioning the scrollbar on the right and the text area on
the left. The fill attribute specifies that the Text widget is allowed to use all free space on both the
X and Y dimensions.

To link the scrollbar to the Text widget, we set the yscrollcommand property of the Text widget to
t he set method of the scrollbar. Similarly, the command attribute of the scrollbar is set to

text.yview.

Dialogs

It is sometimes useful to pop up a little window with a message and make the user click OK before
they can do anything else (see Figure 7-9). These windows are called modal dialogs, and Tkinter has
a whole range of them in the package tkinter.messagebox.

Figure 7-9 An alert dialog

The following example shows how to display such an alert. As well as showinfo,
tkinter.messagebox also has the functions showwarning and showerror that work just the same,
but display a different symbol in the window.

Other kinds of dialogs can be found in the packages tkinter.colorchooser and

tkinter.filedialog.
Color Chooser
The Color Chooser returns a color as separate RGB components as well as a standard hex color

string (see Figure 7-10).

Figure 7-10 The Color Chooser

This code returns something like this:

File Chooser

File Choosers can be found in the package tkinter.filedialog. These follow exactly the same
pattern as the other dialogs we have looked at.

Menus

You can give your applications menus. As an example, we can create a very simple application with
an entry field and a couple of menu options (see Figure 7-11).

Figure 7-11 Menus

The first step is to create a root Menu. This is the single object that will contain all the menus (File
and Edit, in this case, along with all the menu options).

To create the File menu, with its single option, Quit, we first create another instance of Menu and
then add a command for Quit and finally add the File menu to the root Menu:

The Edit menu is created in just the same way. To make the menus appear on the window, we have
to use the following command:

The Canvas

In the next chapter, you’ll get a brief introduction to game programming using PyGame. This allows
all sorts of nice graphical effects to be achieved. However, if you just need to create simple graphics,
such as drawing shapes or plotting line graphs on the screen, you can use Tkinter’s Canvas interface
instead (see Figure 7-12).

Figure 7-12 The Canvas widget

The Canvas is just like any other widget you can add to a window. The following example shows
how to draw rectangles, ovals, and lines:

You can draw arcs, images, polygons, and text in a similar way. Refer to an online Tkinter
reference such as http://infohost.nmt.edu/tcc/help/pubs/tkinter/ for more information.

NOTE The origin of the coordinates is the top-left corner of the window, and the coordinates

are in pixels.

Summary

In a book this size, it is sometimes only possible to introduce a topic and get you started on the right
path. Once you’ve followed the examples in this chapter, run them, altered them, and analyzed what’s
going on, you will soon find yourself hungry for more information. You will get past the need for
hand-holding and have specific ideas of what you want to write. No book is going to tell you exactly
how to build the project you have in your head. This is where the Internet really comes into its own.

Good online references to take what you’ve learned further can be found here:
• www.pythonware.com/library/tkinter/introduction/

• http://infohost.nmt.edu/tcc/help/pubs/tkinter/

http://infohost.nmt.edu/tcc/help/pubs/tkinter/
http://www.pythonware.com/library/tkinter/introduction/
http://infohost.nmt.edu/tcc/help/pubs/tkinter/

8
Games Programming

Clearly a single chapter is not going to make you an expert in game programming. A number of good

books are devoted specifically to game programming in Python, such as Beginning Game

Development with Python and Pygame, by Will McGugan. This chapter introduces you to a very
handy library called pygame and gets you started using it to build a simple game.

What Is Pygame?

Pygame is a library that makes it easier to write games for the Raspberry Pi—or more generally for
any computer running Python. The reason why a library is useful is that most games have certain
elements in common, and you’ll encounter some of the same difficulties when writing them. A library
such as pygame takes away some of this pain because someone really good at Python and game
programming has created a nice little package to make it easier for us to write games. In particular,
pygame helps us in the following ways:

• We can draw graphics that don’t flicker.

• We can control the animation so that it runs at the same speed regardless of whether we run it on
a Raspberry Pi or a top-of-the-range gaming PC.

• We can catch keyboard and mouse events to control the game play.

The Raspbian Wheezy distribution comes with two versions of Python: Python 2 and Python 3. That
is why two shortcuts to IDLE appear on the desktop. So far in this book, we have been using IDLE 3
and thus Python 3. In Raspbian Wheezy, the Python 3 installation does not include pygame, whereas
the Python 2 installation has it preinstalled.

Rather than install pygame into Python 3 (which is a bit involved), we will use Python 2 in this

chapter. Don’t worry, all the code that we write should still work on Python 3 should you prefer (or
find that in a later distribution pygame is there waiting for you). You just have to remember to start
IDLE instead of IDLE 3.

Hello Pygame

You may also have a shortcut on your desktop called Python Games. This shortcut runs a launcher
program that allows you to run some Python games. However, if you use the File Explorer, you will
also find a directory in your root directory called python_games. If you look in here, you will see the
.py files for the games, and you can open these files in IDLE to have a look at how others have written
their games.

Figure 8-1 shows what a Hello World–type application looks like in pygame, and here is the code
listing for it:

Figure 8-1 Hello Pygame

This is a very crude example, and it doesn’t have any way of exiting gracefully. Closing the Python
console from which this program was launched should kill it after a few seconds.

Looking at the code for this example, you can see that the first thing we do is import pygame. The

method init (short for initialize) is then run to get pygame set up and ready to use. We then assign a
variable called screen using the line

which creates a new window that’s 200 by 200 pixels. We then fill it with white (the color 255, 255,
255) on the next line before setting a caption for the window of “Hello Pygame.”

Games use graphics, which usually means using images. In this example, we read an image file into

pygame:

In this case, the image is a file called raspberry.jpg, which is included along with all the other
programs in this book in the programs download section on the book’s website. The call to convert(
) at the end of the line is important because it converts the image into an efficient internal

representation that enables it to be drawn very quickly, which is vital when we start to make the
image move around the window.

Next, we draw the raspberry image on the screen at coordinates 100, 100 using the blit command.

As with the Tkinter canvas you met in the previous chapter, the coordinates start with 0, 0 in the top-
left corner of the screen.

Finally, the last command tells pygame to update the display so that we get to see the image.

A Raspberry Game

To show how pygame can be used to make a simple game, we are going to gradually build up a game
where we catch falling raspberries with a spoon. The raspberries fall at different speeds and must be
caught on the eating end of the spoon before they hit the ground. Figure 8-2 shows the finished game in
action. It’s crude but functional. Hopefully, you will take this game and improve upon it.

Figure 8-2 The raspberry game
Following the Mouse

Let’s start developing the game by creating the main screen with a spoon on it that tracks the
movements of the mouse left to right. Load the following program into IDLE:

The basic structure of our Hello World program is still there, but you have some new things to
examine. First of all, there are some more imports. The import for pygame.locals provides us
access to useful constants such as QUIT, which we will use to detect when the game is about to exit.
The import of exit from sys allows us to quit the program gracefully.

We have added two variables (spoon_x and spoon_y) to hold the position of the spoon. Because
the spoon is only going to move left to right, spoon_y will never change.

At the end of the program is a while loop. Each time around the loop, we first check for a QUIT
event coming from the pygame system. Events occur every time the player moves the mouse or
presses or releases a key. In this case, we are only interested in a QUIT event, which is caused by
someone clicking the window close icon in the top-right corner of the game window. We could chose
not to exit immediately here, but rather prompt the player to see whether they indeed want to exit. The
next line clears the screen by filling it with the color white.

Next comes an assignment in which we set spoon_x to the value of the x position of the mouse.

Note that although this is a double assignment, we do not care about the y position of the mouse, so
we ignore the second return value by assigning it to a variable called ignore that we then ignore. We
then draw the spoon on the screen and update the display.

Run the program. You should see the spoon following the mouse.
One Raspberry

The next step in building the game is to add a raspberry. Later on we will expand this so that there are
three raspberries falling at a time, but starting with one is easier. The code listing for this can be
found in the file 08_03_rasp_game_one.py.

Here are the changes from the previous version:
• Add global variables for the position of the raspberry (raspberry_x and raspberry_y).
• Load and convert the image raspberry.jpg.

• Separate updating the spoon into its own function.

• Add a new function called update_raspberry.
• Update the main loop to use the new functions.

You should already be familiar with the first two items in this list, so let’s start with the new
functions:

The function update_spoon just takes the code we had in the main loop in
08_02_rasp_game_mouse and puts it in a function of its own. This helps to keep the size of the main
loop down so that it is easier to tell what’s going on.

The function update_raspberry changes the values of raspberry_x and raspberry_y. It adds 5
to the y position to move the raspberry down the screen and moves the x position by a random amount
between –5 and +5. This makes the raspberries wobble unpredictably during their descent. However,
the raspberries will eventually fall off the bottom of the screen, so once the y position is greater than
the position of the spoon, the function moves them back up to the top and to a new random x position.

There is also a danger that the raspberries may disappear off the left or right side of the screen.

Therefore, two further tests check that the raspberries aren’t too near the edge of the screen, and if
they are then they aren’t allowed to go any further left or right.

Here’s the new main loop that calls these new functions:

Try out 08_03_rasp_game_one. You will see a basically functional program that looks like the
game is being played. However, nothing happens when you catch a raspberry.
Catch Detection and Scoring

We are now going to add a message area to display the score (that is, the number of raspberries

caught). To do this, we must be able to detect that we have caught a raspberry. The extended program
that does this is in the file 08_04_rasp_py_game_scoring.py.

The main changes for this version are two new functions, check_for_catch and display:

Note that because the condition for the if is so long, we use the line-continuation command (\) to
break it into two lines.

The function check_for_catch adds 1 to the score if the raspberry has fallen as far as the spoon

(raspberry_y >= spoon_y) and the x position of the raspberry is between the x (left) position of the
spoon and the x position of the spoon plus 50 (roughly the width of the business end of the spoon).

Regardless of whether the raspberry is caught, the score is displayed using the display function.

The check_for_catch function is also added into the main loop as one more thing we must do each
time around the loop.

The ‘display’ function is responsible for displaying a message on the screen.

You write text on the screen in pygame by creating a font, in this case, of no specific font family but
of a 36-point size and then create a text object by rendering the contents of the string message onto
the font. The value (10, 10, 10) is the text color. The end result contained in the variable text can
then be blitted onto the screen in the usual way.
Timing

You may have noticed that nothing in this program controls how fast the raspberries fall from the sky.
We are lucky in that they fall at the right sort of speed on a Raspberry Pi. However, if we were to run
this game on a faster computer, they would probably fly past far too fast to catch.

To manage the speed, pygame has a built-in clock that allows us to slow down our main loop by

just the right amount to perform a certain number of refreshes per second. Unfortunately, it can’t do
anything to speed up our main loop. This clock is very easy to use; you simply put the following line
somewhere before the main loop:

This creates an instance of the clock. To achieve the necessary slowing of the main loop, put the
following line somewhere in it (usually at the end):

In this case, we use a value of 30, meaning a frame rate of 30 frames per second. You can put a
different value in here, but the human eye (and brain) do not register any improvement in quality
above about 30 frames per second.
Lots of Raspberries

Our program is starting to look a little complex. If we were to add the facility for more than one
raspberry at this stage, it would become even more difficult to see what is going on. We are therefore
going to perform refactoring, which means changing a perfectly good program and altering its
structure without changing what it actually does or without adding any features. We are going to do
this by creating a class called Raspberry to do all the things we need a raspberry to do. This still
works with just one raspberry, but will make working with more raspberries easier later. The code

listing for this stage can be found in the file 08_05_rasp_game_refactored.py. Here’s the class
definition:

The raspberry_x and raspberry_y variables just become variables of the new Raspberry class.
Also, when an instance of a raspberry is created, its x position will be set randomly. The old
update_raspberry function has now become a method on Raspberry called just update. Similarly,
the check_for_catch function now asks the raspberry if it has been caught.

Having defined a raspberry class, we create an instance of it like this:

Thus, when we want to check for a catch, the check_for_catch just asks the raspberry like this:

The call to display the score has also been moved out of the check_for_catch function and into
the main loop. With everything now working just as it did before, it is time to add more raspberries.
The final version of the game can be found in the file 08_06_rasp_game_final.py. It is listed here in
full:

import pygame
from pygame.locals import *
from sys import exit
import random

score 0

screen width = 600
screen height = 400

spoon x
spoon y

300

screen height - 100

class Raspberry:
x = 0
y = 0
dy = 0

def lnlt (eels):
eels.x - random.randintllO, screen_width)

anlt.y - 0

self.dy = random.randint(3. 101

def updste{self):
self.y += self.dy
if sell.y > spoon_y:

self.x = random.zand1nt(10, screen_w1dthl
self.x +- random.randint(-5, 5}

if self.x • 10:
self.x = lO

if eels.x > screen_width - 20:

self.x - screen_width - 2O
screen.blItlzaspberry_image. (self.x. eels.yl}

det 1 s _ c a u g h ¢ (s e t I) :

r e t u r n s e l f y. >= spoon_y and well . x >=

and sell.x < apoon_x + 50

clock = pygame.time.Clock(}
ramps - {Raspberry(), Raspberry{), Raspberry()]

pygame.ln1t(l

screen - pygame.display.set_mo‹A((acr€en_width, screen_height))
pygame.aIsplay.set_captIon('Raspberry Catching'}

spoon - pygams.image.load('spoon.jpg').convert{)

raapberry_1wa<je = t:›ygame . 1 waste . Load t r a s p b e r r y . jpg' I . conve r t t i

del updste_epoont):
global epoon_x
global spoon y
spoou_x, ignore - pygame mouse.getposll
screen.bl1t(spoon. (spoon_x, spoonp)1

del checK_for_cat ch I) :
global score
for r in respe:

acore += 1

del d1 sp1

font
text

ay I me eeage T •
- pygame.font.Font fPone, 36)
• 1, (10, 10, 10))

oc reen . b11 c (t e x t , T0, 0) 1
wh:?1e T:rue :

for event in pygame.event.get():

if event.type == QUIT:

exit()

screen.fill((255, 255, 255))

for r in rasps:

r.update()

update spoon()
check for catch()

display("Score: ” + str(score))
pygame.display.update()

clock.tick(BO)

To create multiple raspberries, the single variable r has been replaced by a collection called

rasps:

This creates three raspberries; we could change it dynamically while the program is running by
adding new raspberries to the list (or for that matter removing some).

We now need to make just a couple other changes to deal with more than one raspberry. First of

all, in the check_for_catch function, we now need to loop over all the raspberries and ask each one
whether it has been caught (rather than just the single raspberry). Second, in the main loop, we need
to display all the raspberries by looping through them and asking each to update.

Summary

You can learn plenty more about pygame. The official website at www.pygame.org has many
resources and sample games that you can play with or modify.

http://www.pygame.org/

9
Interfacing Hardware

The Raspberry Pi has a double row of pins on one side of it. These pins are called the GPIO

connector (General Purpose Input/Output) and allow you to connect electronic hardware to the Pi as

an alternative to using the USB port.
The maker and education communities have already started producing expansion and prototyping

boards you can attach to your Pi so you can add your own electronics. This includes everything from
simple temperature sensors to relays. You can even convert your Raspberry Pi into a controller for a
robot.

In this chapter, we explore the various ways of connecting the Pi to electronic devices using the

GPIO. We’ll use some of the first products that have become available for this purpose. Because this
is a fast-moving field, it is fairly certain that new products will have come on the market since this
chapter was written; therefore, check the Internet to see what is current. I have tried to choose a
representative set of different approaches to interfacing hardware. Therefore, even if the exact same
versions are not available, you will at least get a flavor of what is out there and how to use it.

Products to help you attach electronics to your Pi can be categorized as either expansion boards or

prototyping tools. Before we look at each of these items, we will look at exactly what the GPIO
connector provides us.

GPIO Pin Connections

Figure 9-1 shows the connections available on the Raspberry Pi’s GPIO connector. The pins labeled
GPIO can all be used as general-purpose input/output pins. In other words, any one of them can first
be set to either an input or an output. If the pin is set to be an input, you can then test to see whether
the pin is set to a “1” (above about 1.7V) or a “0” (below 1.7V). Note that all the GPIO pins are 3.3V
pins and connecting them to higher voltages than that could damage your Raspberry Pi.

Figure 9-1 GPIO pin connections

When set to be an output, the pin can be either 0V or 3.3V (logical 0 or 1). Pins can only supply or
sink a small amount of current (assume 5mA to be safe), so they can just light an LED if you use a
high value resistor (say, 1kΩ). You will notice that some of the GPIO pins have other letters in
parentheses after their names. Those pins have some special purpose. For example, GPIO 0 and 1
have the extra names of SDA and SCL. These are the clock and data lines, respectively, for a serial

bus type called I2C that is popular for communicating with peripherals such as temperature sensors,
LCD displays, and the like. This I2C bus is used by the Pi Face and Slice of PI/O discussed in the
following sections.

GPIO pins 14 and 15 also double as the Rx and Tx (Receive and Transmit) pins for the Raspberry

Pi’s serial port. Yet another type of serial communication is possible through GPIO 9 to 11 (MISO,
MOSI, and SCLK). This type of serial interface is called SPI.

Finally, GPIO 18 and GPIO 21 are labeled PWM, meaning that they are capable of pulse width

modulation. This technique allows you to control the power to motors, LEDs etc. by varying the width
of pulses generated at a constant rate.

Direct Connection to GPIO Pins

With care, it is possible to attach simple electronics such as LEDs directly to the GPIO pins;
however, only do this if you know what you are doing because you could easily damage your
Raspberry Pi. In fact, this is more or less what we will be doing in the later section “Prototyping
Boards.”
Expansion Boards

Expansion boards usually have screw terminals and a certain amount of electronics already built in.
This makes them very suitable for educational use as well as for those who do not want to get deeply
involved in the electronics side of things. In general, no soldering needs to be done with these kind of
boards. They will usually “buffer” all the connections to the Raspberry Pi, which means the
Raspberry Pi is protected from anything untoward occurring on the expansion board. For example, a
short circuit across an output might damage the expansion board, but no harm will befall your
precious Pi.

The sections that follow detail some of the more popular boards, explain their features, and detail

how you might go about using them. One such board (the RaspiRobotBoard) will be used to create a
simple robot in Chapter 11.
Pi Face

The Pi Face, shown in Figure 9-2, is a board intended primarily for educational use. It was been
developed by Manchester University in the UK. As well as providing a useful hardware platform, it
also provides an easy-to-use Python library and integration with the Scratch programming
environment.

Figure 9-2 The Pi Face expansion board

The Pi Face sits on top of the Raspberry Pi and provides convenient screw terminals for
connecting devices to it. It does not use the GPIO pins directly, but rather uses as an MCP23S17 port

expander chip that it communicates with using the I2C serial interface. This provides eight inputs and
eight outputs on the expansion board, but only the two I2C pins on the Raspberry Pi GPIO connector
are used. The outputs are provided with further current amplification using a Darlington driver IC that
can supply up to 500mA for each output—more than enough power to directly drive a relay or a 1W
high-power LED.

Output devices on the board include two relays that can be used to switch high-load currents. Each

relay also has an LED that lights when the relay is activated. There are also two LEDs that can be
controlled independently. Four of the inputs have push switches next to them.

The Pi Face has its own Python module that simplifies the use of the board. The following example

entered into the Python console shows you how to read digital input 2:

To turn on digital output 2, you would do the following:

The LEDs and relays have their own control functions. The following example turns LED 1 on then
off again and then turns Relay 1 on:

The library must be downloaded and installed. For downloads, documentation, and some sample
projects, visit the projects code page at https://github.com/thomasmacpherson/piface. You can also
find more information about the project at http://pi.cs.man.ac.uk/interface.htm.
Slice of PI/O

The Slice of PI/O, shown in Figure 9-3, is a small, low-cost board that provides eight buffered inputs
and eight buffered outputs using the same MCP23S17 port expander as the Pi Face. It does not,
however, have the Darlington driver of the Pi Face and, therefore, cannot drive high-power loads.
The maximum load directly from the MCP23S17 is 25mA, which is enough to drive an LED with
suitable series resistor, but not enough to drive a relay directly.

http://github.com/thomasmacpherson/piface
http://pi.cs.man.ac.uk/interface.htm

Figure 9-3 The Slice of PI/O

The board takes all the I/O pins to edge connectors, and each of the 16 I/O pins can be configured
as either an input or output.

Here’s a list of the key features:
• Sixteen bidirectional buffered I/O connections
• Jumper-selected 3.3V or 5V operation
• Raspberry Pi I2C and SPI serial connections broken out (caution: unbuffered)
• Raspberry Pi GPIO pins 0 to 7 broken out (caution: unbuffered)

At the time of writing, the board is not supplied with any supporting Python module; however, this
is likely to change, either through efforts of the supplier or the Raspberry Pi community.
RaspiRobotBoard

I have to declare my personal interest in the RaspiRobotBoard, shown in Figure 9-4, because it is a
board I have designed. The focus of this board is firmly on allowing the Raspberry Pi to be used as a
robot controller. For this reason, it has a motor controller that allows you to control the direction of
two motors (usually attached to wheels).

Figure 9-4 The RaspiRobotBoard

Another feature that makes it suitable for use as a robot platform is the voltage regulator that
powers the Raspberry Pi using any source of power between 6V and 9V, such as four AA batteries.
The RaspiRobotBoard also has connectors for two different types of serial port, one of which is
intended to take an adapter board for an ultrasonic range finder module. The board also has a pair of
switch inputs, two LEDs, and another pair of buffered outputs that can be used to drive other LEDs or
low-current loads. This board is used in Chapter 11 to build a small roving robot.
Gertboard

The Gertboard is designed by Gert van Loo of Broadcom and therefore is the most official Raspberry
Pi expansion board (see Figure 9-5).

Figure 9-5 A Gertboard expansion board for the Pi
The Gertboard is really the kitchen sink of expansion boards. Its key features are as follows:
• Strapping area where GPIO pins can be connected to different modules
• ATmega (like the Arduino) microcontroller
• SPI analog-to-digital and digital-to-analog converters
• Motor controller (like the RaspiRobotBoard)
• 500mA open collector outputs (like the Pi Face)

• Twelve LEDs and three push buttons

Prototyping Boards

Unlike expansion boards, prototyping boards mostly require the use of a soldering iron and a certain
amount of electronics expertise. They also connect directly to the Raspberry Pi’s main chip, which
means that if you get it wrong, you could easily damage your Raspberry Pi. These boards are for the
experienced electronics enthusiast—or the very careful or the very reckless (who doesn’t mind the
possibility of killing their Raspberry Pi).

One of these prototyping boards, the “Cobbler,” is not actually a board but rather a connector that

allows you to link the GPIO connections to a solderless breadboard where you can add your own
electronics. As a contrast to the expansion board approach, we will explore this method further in the
next chapter using the Cobbler.
Pi Cobbler

The Pi Cobbler from Adafruit (www.adafruit.com/products/914) comes as a kit that must be soldered
together. The soldering is pretty straightforward, and once everything is assembled, you will have a
board with 26 pins coming out of the bottom that can be attached to a solderless breadboard (see

http://www.adafruit.com/products/914

Figure 9-6) . On top of the board is a 26-pin socket to which a 26-way ribbon cable lead (also
supplied) can be used to link the Raspberry Pi GPIO connector to the Cobbler.

Figure 9-6

Pi Plate

The Adafruit Pi Cobbler

The Pi Plate, shown in Figure 9-7, is another product from Adafruit
(https://www.adafruit.com/products/801) . This is a prototyping board that has a large area in the
middle to which you can solder the components for your project. Screw terminals are located all
around the edge of the board so you can attach leads to external components that won’t fit on the
board, such as motors and such. In one corner of the board is an area to which a surface mount IC can
be soldered. The pins next to it “break out” the difficult-to-use pins of the IC.

Figure 9-7 The Adafruit Pi Plate
Humble Pi

The Humble Pi, shown in Figure 9-8, is quite similar to the Pi Plate, but it lacks the surface mount
prototyping area. However, it makes up for this by providing an area where you can add your own
voltage regulator and power socket, making it suitable for powering the Pi at 5V from batteries or an
external power supply. No voltage regulator or associated capacitors are provided, although Ciseco
sells a kit of components for this.

http://www.adafruit.com/products/801

Figure 9-8 The Humble Pi

Arduino and the Pi

Although the Raspberry Pi can be used like a microcontroller to drive motors and such, this is not
really what it was designed for. As such, the GPIO pins cannot supply much in the way of drive
current and are somewhat delicate and intolerant of electrical abuse. This is, after all, the motivation
for the expansion boards described in the previous section.

Arduino boards, on the other hand, are much more rugged and designed to be used to control

electronic devices (see Figure 9-9). What is more, they have analog inputs that can measure a voltage
from, say, a temperature sensor.

Figure 9-9 An Arduino board connected to a Raspberry Pi

Arduino boards are designed to allow communication with a host computer using USB, and there is
no reason why this host shouldn’t be a Raspberry Pi. This means that the Arduino takes care of all the
electronics and the Raspberry Pi sends it commands or listens for incoming requests from the
Arduino.

If you have an Arduino, you can try out the following simple example, which allows you to send

messages to the Arduino to blink its build-in LED on and off while at the same time receiving
incoming messages from the Arduino. Once you can do that, it is easy to adapt either the Arduino
sketch or the Python program on the Raspberry Pi to carry out more complex tasks.

This example assumes you are familiar with the Arduino. If you are not, you may want to read some
of my other books on the Arduino, including Programming Arduino: Getting Started with Sketches

and 30 Arduino Projects for the Evil Genius.
Arduino and Pi Talk
To get the Arduino and Pi to talk, we are going to connect them using a USB port on the Raspberry Pi.

Because the Arduino only draws about 50mA and in this case has no external electronics attached to
it, it can be powered by the Pi.
The Arduino Software

All you need to do is load the following Arduino sketch onto the Arduino. You will probably want to
do this with your regular computer, because at the time of writing, only a very old version of the
Arduino software is available for the Raspberry Pi. The following sketch is available in the
downloads package and is called PiTest.ino:

This very simple sketch contains just three functions. T he setup function initializes serial

communications and sets pin 13 on the LED to be an output. This pin is attached to the LED built into
the Arduino. The loop function is invoked repeatedly until the Arduino is powered down. It first
sends the message “Hello Pi” to the Raspberry Pi and then checks to see whether there is any
incoming communication from the Pi. If there is (it expects a single digit), it flashes the LED on and
off that many times using the flash function.
The Raspberry Pi Software

The Python code to talk to the Arduino is even more simple and can just be typed into the Python
console. But first, you need to install the PySerial package to allow the communication to take place.
This is done in the same way as the other packages we have installed—just fetch the zipped tar file
from http://sourceforge.net/projects/pyserial/files/latest/download?source=files.

Next, extract the directory from the archive by entering the following command:

Now that you have a new folder for the module, just cd into it and then run the install command
(first, though, it is worth checking the instructions to see if anything else needs doing beforehand).
You are now ready to run the module installer itself, as follows:

Once it’s installed, you will be able to import the module from the Python shell. Now switch from
the Linux terminal to a Python console and type the following:

This opens the USB serial connection with the Arduino at the same baud rate of 9600. Now you
need to start a loop listening for messages from the Arduino:

You will need two hit ENTER twice after you type the second line. Messages should now start to
appear! You can see in the blue writing where the Arduino is talking to the Pi and then some error
trace as you press CTRL-C to interrupt the messages coming from the Arduino.

Now type the following into the Python console:

This should cause the LED to flash five times.

Summary

In this chapter we looked at just some of the wide range of ways of adding electronics to our
Raspberry Pi projects. In the next two chapters, we create projects using two different approaches—
first using the Adafruit Cobbler and breadboard and then using the RaspiRobotBoard as the basis for
a small roving robot.

http://sourceforge.net/projects/pyserial/files/latest/download?source=files

10
Prototyping Project (Clock)

In this chapter, we will build what can only be seen as a grossly over-engineered LED digital clock.

We will be using a Raspberry Pi, Adafruit’s Cobbler lead, a breadboard, and a four-digit LED

display (see Figure 10-1).

Figure 10-1 LED clock using the Raspberry Pi

In the first phase of the design, the project will just display the time. However, a second phase
extends the project by adding a push button that, when pressed, switches the display mode between
displaying hours/minutes, seconds, and the date.

What You Need

To build this project, you will need the following parts. Suggested part suppliers are listed, but you
can also find these parts elsewhere on the Internet.

Hardware Assembly

Both the Pi Cobbler and the display modules from Adafruit come as kits that must be soldered
together before they can be used. Both are fairly easy to solder, and detailed step-by-step instructions
for building them can be found on the Adafruit website. Each module has pins that just push into the
holes on the breadboard.

The display has just four pins (VCC, GND, SDA, and SCL) when it is plugged into the breadboard;
align it so that the VCC pin is on row 1 of the breadboard.

The Cobbler has 26 pins, but we will only be using a few of them. It should be inserted at the other
end of the breadboard, or at least far enough away so that none of the pins overlap with the same
rows as the display. The Cobbler socket has a cutout on one side to ensure that the ribbon cable can
only be inserted one way. This cutout should be toward the top of the breadboard, as shown in Figure
10-2.

Figure 10-2 Breadboard layout

Underneath the holes of the solderless breadboard are strips of connectors, linking the five holes of

a particular row together. Note that because the board is on its side, the rows actually run vertically
in Figure 10-2.

Figure 10-2 shows the solderless breadboard with the four pins of the display at one end of the

breadboard and the Cobbler at the other. When you’re following the instructions in this chapter, it
will help if you insert your modules the same way as Figure 10-2 shows.

NOTE It is much easier to attach the jumper wires to the breadboard without the ribbon cable

attached to the Cobbler.
The connections that need to be made are listed here:

The color scheme shown in this table is only a suggestion; however, it is common to use red for a
positive supply and black or blue for the ground connection.

CAUTION In this project, we are connecting a 5V display module to the Raspberry Pi, which

generally uses 3.3V. We can only safely do this because the display module used here only acts
as a “slave” device and hence only listens on the SDA and SCL lines. Other I2C devices may
act as a master device, and if they are 5V, there is a good chance this could damage your Pi.
Therefore, before you connect any I2C device to your Raspberry Pi, make sure you understand
what you are doing.

We can now link the Cobbler to the Raspberry Pi using the ribbon cable supplied with the Cobbler.
This should be done with the Raspberry Pi powered down. The cable will only fit one way into the
Cobbler, but no such protection is provided on the Raspberry Pi. Therefore, make sure the red line on
the cable is to the outside of the Raspberry Pi, as shown in Figure 10-1.

Turn on the Raspberry Pi. If the usual LEDs do not light, turn it off immediately and check all the

wiring.

Software

Everything is connected, and the Raspberry Pi has booted up. However, the display is still blank
because we have not yet written any software to use it. We are going to start with a simple clock that
just displays the Raspberry Pi’s system time. The Raspberry Pi does not have a real-time clock to tell
it the time. However, it will automatically pick up the time from a network time server if it is
connected to the Internet.

The Raspberry Pi displays the time in the bottom-right corner of the screen. If the Pi is not

connected to the Internet, you can set the time manually using the following command:

However, you will have to do this every time you reboot. Therefore, it is far better to have your
Raspberry Pi connected to the Internet.

If you are using the network time, you may find that the minutes are correct but that the hour is

wrong. This probably means that your Raspberry Pi does now know which time zone it is in. This can
be fixed by using the following command, which opens up a window where you can select your
continent and then the city for the time zone you require:

At the time of writing, in order to use the I2C bus that the display uses, the Raspbian Wheezy
distribution requires that you issue a few commands to make the I2C bus accessible to the Python

program we are going to write. It is likely that later releases of Raspbian (and other distributions)
will have the port already configured so that the following commands are not necessary. However,
for the moment, here is what you need to do:

NOTE You may find that you have to issue the last two of these commands each time you reboot

the Raspberry Pi.
So now that the Raspberry Pi knows the correct time and the I2C bus is available, we can write a

Python program that sends the time to the display. To help simplify this process, I have produced a
Python library module specifically for this kind of display. It can be downloaded from
http://code.google.com/p/i2c7segment/downloads/list.

As with other modules you have installed, you need to fetch the file, extract it into some convenient

location (using tar -xzf), and then issue the following command to install it under Python 2:

The actual clock program itself is contained in the file bundle that accompanies this book (see
www.raspberrypibook.com); it is called 10_01_clock.py and is listed here:

The program is nice and simple. The loop continues forever, getting the hour and minute and
showing them in the correct places on the display by multiplying the hour by 100 to shift it into the
leftmost digits and then adding the minutes that will appear on the right.

The i2c7segment library does most of the work for us. This library is used by first setting what is

to be displayed using print_int or draw_colon and then using write_display to update what is
displayed.

The colon is made to flash by turning it on, waiting half a second, and then turning it off again.

Access to the I2C port is only available to super-users, so you need to run the command as a super-
user by entering the following:

If everything is working okay, your display should show the time.

Phase Two

Having got the basic display working, let’s expand both the hardware and software by adding a button
that changes the mode of the display, cycling between the time in hours and minutes, the seconds, and

http://code.google.com/p/i2c7segment/downloads/list
http://www.raspberrypibook.com/

the date. Figure 10-3 shows the breadboard with the switch added as well as two new patch wires.
Note that we are just adding to the layout of the first phase by adding the button; nothing else is
changed.

Figure 10-3 Adding a button to the design

NOTE Shut down and power off your Pi before you start making changes on the breadboard.

The button has four leads and must be placed in the right position; otherwise, the switch will
appear to be closed all the time. The leads should emerge from the sides facing the top and bottom of
Figure 10-3. Don’t worry if you have the switch positioned in the wrong way—it will not damage
anything, but the display will continuously change mode without the button being pressed.

Two new wires are needed to connect the switch. One goes from one lead of the switch (refer to

Figure 10-3) to the GND connection of the display. The other lead goes to the connection labeled #17
on the Cobbler. The effect is that whenever the button on the switch is pressed, the Raspberry Pi’s
GPIO 17 pin will be connected to ground.

You can find the updated software in the file 10_02_fancy_clock.py and listed here:

import i2c7segment as display
import time
import RPi.GPIO as io

switchpin = 17
io.setmode(io.BCM)
io.setup(switchpin, io.IN, pull_up_down=io.PUD_UP)
disp = display.Adafruit7Segment()

time_mode, seconds_mode, date_mode = range(3)
disp_mode = t1me_mode

def display time():

h = time.localtime().tm_hour
m = time.localtime().tm_min
disp.print_int(h * 100 + m)
disp.draw colon(True)
disp.write display()
time.sleep(0.5)
disp.draw_colon(False)
disp.write display()
time.sleep(0.5)

The first thing to notice is that because we need access to GPIO pin 17 to see whether the button is
pressed, we need to use the RPi.GPIO library. We used this as an example of installing a module
back in Chapter 5. Therefore, if you have not installed RPi.GPIO, refer back to Chapter 5 and do so
now.

We set the switch pin to be an input using the following command:

This command also turns on an internal pull-up resistor that ensures the input is always at 3.3V
(high) unless the switch is pressed to override it and pull it low.

Most of what was in the loop has been separated into a function called display_time. Also, two

new functions have been added: display_seconds and display_date. These are fairly self-
explanatory.

One point of interest is that display_date displays the date in U.S. format. If you want to change

this to the international format, where the day of the month comes before the month, change the line
that starts with disp.print_int appropriately (refer to the comments in the code).

To keep track of which mode we are in, we have added some new variables in the following lines:

The first of these lines gives each of the three variables a different number. The second line sets the
disp_mode variable to the value of time_mode, which we use later in the main loop.

The main loop has been changed to determine whether the button is pressed. If it is, then 1 is added
to disp_mode to cycle the display mode. If the display mode has reached the end, it is set back to
time_mode.

Finally, the if blocks that follow select the appropriate display function, depending on the mode,

and then call it.

Summary

This project’s hardware can quite easily be adapted to other uses. You could, for example, present all
sorts of things on the display by modifying the program. Here are some ideas:

• Your current Internet bandwidth (speed)
• The number of e-mails in your inbox
• A countdown of the days remaining in the year
• The number of visitors to a website

In the next chapter, we build another hardware project—this time a roving robot—using the
Raspberry Pi as its brain.

11
The RaspiRobot

In this chapter, you will learn how to use the Raspberry Pi as the brain for a simple robot rover,

shown in Figure 11-1. The Pi will take commands from a wireless USB keyboard and control the
power to motors attached to a robot chassis kit. The robot will also (optionally) have an ultrasonic
range finder that tells it how far away obstacles are as well as an LCD screen that displays
information from the range finder.

Figure 11-1 The RaspiRobot

Like the project in the previous chapter, this project is split into two phases. In the first phase, we
create a basic rover that you can drive with a wireless keyboard; in the second phase, we add the
screen and range finder.

WARNING If batteries are attached to the RaspiRobotBoard, they will supply power to the

Raspberry Pi. Do not, under any circumstances, power your Raspberry Pi from its power
adaptor and the RaspiRobotBoard at the same time. You can leave the RaspiRobotBoard
attached to your Raspberry Pi, but do not attach the motors or batteries to it.

What You Need

To build this project, you need the following parts. Suggested part suppliers are listed, but you can
find other suppliers on the Internet.

Phase 1: A Basic Rover

Figure 11-2 shows the basic rover. The basis for this rover is the Magician Chassis kit. This useful
kit is composed of a plastic chassis, gear motors, wheels, and all the nuts and bolts to assemble the
chassis. It also includes a battery box for four AA batteries, but in this project, that box will be
replaced by one that takes six AA batteries.

Figure 11-2 The basic rover
Hardware Assembly

This project is assembled from a number of different kits of parts. If you search around, you may find
already-assembled options when buying the RaspiRobotBoard and the range finder serial adapter,
which means the entire project can be built without any soldering (or, in fact, any tools more difficult
to use than a screwdriver).
Step 1: Assemble the Chassis

The Magician Chassis comes as a kit of parts that must be assembled. Included in the kit are detailed
assembly instructions. When assembling the chassis, you need to replace the supplied battery box
(four AA cells) with your six-AA-cell version (see Figure 11-3). If your battery box is the kind that
holds two rows of three cells, you will find that the top plate of the Magician Chassis can hold it in
place. In fact, it will be quite a tight fit and spring out a little; therefore, you will not need to fit the
middle strut.

Figure 11-3 Replacing the battery box

If your battery box has the cells all in a single row, you will probably need to use the screws that
came with the Magician Chassis for its battery box to fix your battery holder securely onto the
chassis.

Attach the battery clip to the battery box and the trailing leads from the battery clip to the screw
terminal in order to power plug adapter. Be very careful to get the polarity correct (red to plus)!

Before you attach the top surface of the Magician Chassis, slip a rubber band over the top surface.

This will be used to hold the Raspberry Pi in place (refer to Figure 11-2).
Step 2: Assemble the RaspiRobotBoard
At the time of writing, it was not clear whether the RaspiRobotBoard will be available already

assembled or in kit form only. If it is available in kit form, you need to follow the instructions that
accompany it to build the board. Once assembled, the board should look like the one shown in Figure
11-4.

Figure 11-4 The RaspiRobotBoard

Note that these instructions are for Version 1 of the board. The position of the connectors may
change in later versions. See the book's website (www.raspberrypibook.com) for more information.
All the connections we are interested in are on the right side of Figure 11-4. At the top is the power
socket, and beneath that are the screw terminals for the left and right motors.
Step 3: Install the Software on the Raspberry Pi

To control the robot, we are going to write a program in Python that detects key presses and use them
to control the power to the robot’s motors on the robot. To do this, we will use pygame, which
provides a useful way of finding out whether or not keys are pressed.

It will be much easier to set the program up before we attach the Raspberry Pi to the chassis.

Therefore, attach the RaspiRobotBoard to the Raspberry Pi, but leave the motors and battery
disconnected and power up the Pi from your normal USB power supply.

The RaspiRobotBoard has its own Python library, but also relies on some other libraries that must

be installed. First of all, it requires the RPi.GPIO library that you first met in Chapter 5 and then
again in Chapter 10. If you have not already done so, install the RPi.GPIO library. You will also need
to install the PySerial library. See the instructions for this in the Arduino section toward the end of
Chapter 9.

http://www.raspberrypibook.com/

The RaspiRobotBoard library can be installed from the following website:
http://code.google.com/p/raspirobotboard/downloads/list

Installation is the same as for any other Python package. Because we are using Python 2 in this

project, the library should be installed using the command on the following page.

The actual Python program for this version of the robot is contained in the file
11_01_rover_basic.py, which must be run as super user. Therefore, just to try things out (still with the
motors disconnected), run the program by changing to the “code” directory and entering the following
in the terminal:

A blank pygame window should appear and the two LEDs go out. We can test the program without
the motors because the program sets the LEDs as well as controls the motors. Thus, if you press the
UP ARROW key, both LEDs should light once more. Press the SPACEBAR to turn them off again. Then try
the LEFT and RIGHT ARROW keys; an LED should light that corresponds to the key you pressed.

We are not going to have leads trailing from our robot to a monitor and mouse, so we need to

arrange for this program to automatically start when our Raspberry Pi has finished booting up. To do
this, we need to place the file raspirobot_basic.desktop (included in the “code” directory) into a
directory named /home/pi/.config/autostart. You can do all this with the File Manager. Just type

/home/pi/.config in the address bar at the top of the screen. Note that directories that start with a dot
are hidden, so you cannot navigate to it in the File Manager simply by clicking.

If there is no directory inside.config called autostart, so create one and copy the file

raspirobot_basic.desktop into it. We can make sure our autostart works by rebooting the Pi. If all
goes well, the pygame window will appear automatically.

We will return later to look at the code for this project, but for now, let’s just get everything
working.
Step 4: Connect the Motors

Shut down and disconnect the Raspberry Pi from its power supply. Be sure to put it away so that you
do not accidentally apply both it and the battery connection. Put the batteries into the battery holder
and fix the top plate of the chassis into place. Cover the metal screws with little patches of insulating
tape or Scotch tape to prevent accidental shorts with the Raspberry Pi and then slip the Pi under the
elastic band. Next, attach the motors to the terminal block, as shown in Figure 11-5.

http://code.google.com/p/raspirobotboard/downloads/list

Figure 11-5 Attaching the motors

Each motor has a red and a black lead. Therefore, find the leads going to the left motor and attach
the black lead to the leftmost terminal in Figure 11-5. Attach the red lead from the same motor to the
second-from-left terminal block. For the other motor, put the red lead in the third-from-left terminal
and the black lead in the remaining screw terminal.
Step 5: Try It Out

That’s it. We are ready to go! Attach the USB dongle from the wireless keyboard to the Pi and then
attach the plug from the battery lead into the power socket on the RaspiRobotBoard. The LEDs on the
Raspberry Pi should flicker as it starts to boot. If this does not happen, immediately disconnect the
battery and check your work.

Initially the LEDs on the RaspiRobotBoard should both be lit, but when the Python program starts

to run, they should both turn off. Wait another second or two to allow the program to start up properly
and then try pressing the ARROW and SPACEBAR keys on your keyboard. Your RaspiRobot should start
to move!
About the Software

The software for the first phase is listed here:

NOTE If you skipped Chapter 8 on pygame, now might be a good time to read through it.

The program starts by importing the library modules it needs. It then creates an instance of the class
RaspiRobot and assigns it to the variable rr. The main loop first checks for a QUIT event, and if it
find one it exists the program. The rest of the loop is concerned with checking all of the keys and
issuing the appropriate commands if a key is pressed. For example, if the UP ARROW key (K_UP) is
pressed, the RaspiRobot is sent the command forward, which sets the motors to both go forward as
well as sets both LEDs on.

Phase 2: Adding a Range Finder and Screen

When you complete Phase 2, your RaspiRobot will look like the one shown earlier in Figure 11-1.
Disconnect the battery from the RaspiRobotBoard so that we can start making the necessary changes
to complete this phase.
Step 1: Assemble the Range Finder Serial Adapter

The serial range finder module, shown in Figure 11-6, outputs an inverted signal; therefore, a tiny

board with a single transistor and resistor on it must be used to invert the signal back to normal. Full
instructions for assembling this little adaptor board can be found on the book’s website
(www.raspberrypibook.com).

Figure 11-6 The range finder serial adapter and range finder module

The range finder module plugs into the top of the adapter, and the bottom of the adapter fits into the
serial socket, as shown in Figure 11-7.

Figure 11-7 Assembling the range finder and adapter
Step 2: Attach the Screen

The LCD screen comes in two parts: the screen itself and the driver board. These are connected
together with a rather delicate ribbon cable. I attached the two together with a cushioned self-
adhesive pad. Be careful where you attach the screen, and treat the display delicately.

The screen comes with power leads (red and black) as well as two RCA plugs. To neaten things

up, I cut off one of the RCA plugs (the one connected to the middle cables in the white connector
plug). Refer to Figure 11-8. If this seems too drastic, an alternative is to fasten it somewhere with a
cable tie so that it’s out of the way.

http://www.raspberrypibook.com/

Figure 11-8 Wiring the display

To the remaining RCA plug I attached the male-to-male RCA adapter. The power leads are then
twisted onto the power leads of the same color from the battery clip and inserted into the screw
terminals of the plug adapter. If your battery box is terminated in a plug, you can snip off the plug and
strip the insulation of the wires. These wires can then be used as if they were the leads from the
battery clip. Either way, the project wiring is summarized in Figure 11-9.

Figure 11-9 Wiring diagram

One consequence of this wiring arrangement is that the display will still be connected to the
battery, even if you unplug the power on the RaspiRobot- Board. For this reason, use the battery clip
on the battery box to turn the robot on and off.

NOTE More adventurous readers might like to add the luxury of an on/off switch.

The screen is attached to the chassis by means of adhesive putty. This is not a good permanent
solution; some kind of plastic bracket might be better.
Step 3: Update the Software

The updated hardware needs an update to the software to accompany it. The program can be found in
the file 11_02_rover_plus.py. You also need to arrange for this program to start rather than the
simpler old program. To do this, copy the file raspirobot_plus.desktop into the directory
/home/pi/.config/autostart and remove the raspirobot_basic.desktop file from that folder; otherwise,
both programs would start.

Note that because in this phase of the project, the Raspberry Pi has a screen and a keyboard (albeit
a very small one), it is possible to make the changes described here, but you’ll be using a tiny screen.
If this proves too difficult, then as before, disconnect the battery, detach the motors, and power the
Raspberry Pi from its USB power supply with its regular monitor, keyboard, and mouse.
Step 4: Run It

That’s it! The project is ready to run. As always, if the LEDs on the Raspberry Pi don’t come on
straight away, disconnect the batteries and look for the problem. The Raspberry Pi is pretty power
hungry for a battery-powered device. The screen also uses quite a lot of power. Therefore, to avoid
too much recharging of batteries, you should disconnect them when not in use.
Revised Software

The new program is bigger than the old one, so it is not listed here in full. You can open it up in IDLE
to take a look. The main differences are, as you would expect, the distance sensing and the display.
The function get_range is shown here:

This function is a very thin wrapper around a call to get_range_inch in the RaspiRobot module.
The exception handling is added because if the range finder does not work for any reason (say, it isn’t
plugged in), exceptions will be raised. This function just intercepts any such exceptions and returns a
distance of 0 if that happens.

The update_display function first gets the distance and then displays it along with a graphical

indication of the closeness of any obstacles, as shown in Figure 11-10.

Figure 11-10 The RaspiRobot display

The code for this is shown here:

The distance is measured and a message is constructed into a surface that is then blitted onto the
display. The graphical representation is created by drawing a fixed-size green rectangle and then
drawing a red rectangle on top of it whose width depends on the distance sensed by the range finder.

Summary

This project can be treated as the basis for your own robot projects. The RaspiRobotBoard has two
extra outputs that could be used to drive a buzzer or control other electronics. Another interesting way
of extending the project would be to write software that allows the robot to spin on the spot, and use
the range finder to create a sonar-style chart of the room containing the robot. With a Raspberry Pi
camera module and a Wi-Fi dongle, all sorts of other possibilities for tele-presence devices arise!

The final chapter of this book looks at where to go next with your Raspberry Pi and provides some

useful pointers to other Raspberry Pi resources.

12
What Next

The Raspberry Pi is a phenomenally flexible device that you can use in all sorts of situations—as a

desktop computer replacement, a media center, or an embedded computer to be used as a control

system.
This chapter provides some pointers for different ways of using your Raspberry Pi and details

some resources available to you for programming the Raspberry Pi and making use of it in interesting
ways around the home.

Linux Resources

The Raspberry Pi is, of course, one of many computers that runs Linux. You will find useful
information in most books on Linux; in particular, look for books that relate to the distribution you are
using, which for Raspbian will be Debian.

Aside from the File Manager and applications that require further explanation, you’ll want to know

more about using the Terminal and configuring Linux. A useful book in this area is The Linux
Command Line: A Complete Introduction, by William E. Shotts, Jr. Many good resources for
learning more about Linux can be found on the Internet, so let your search engine be your friend.

Python Resources

Python is not specific to the Raspberry Pi, and you can find many books and Internet resources
devoted to it. For a gentle introduction to Python, you might want to pick up Python: Visual
QuickStart Guide, by Toby Donaldson. It’s similar to this book in style, but provides a different
perspective. Also, it’s written in a friendly, reassuring manner. If you want something a bit more
meaty, but still essentially a beginner’s text, consider Python Programming: An Introduction to
Computer Science, by John Zelle.

When it comes to learning more about Pygame, you’ll find Beginning Game Development with
Python and Pygame, by Will McGugan, to be quite helpful.

Finally, here are some good web resources for Python you’ll probably want to add to your
browser’s favorites list:

• http://docs.python.org/py3k/ The official Python site, complete with useful tutorials and
reference material.

• www.pythonware.com/library/tkinter/introduction/ A useful reference for Tkinter.

• http://zetcode.com/gui/tkinter/layout/ This tutorial sheds some much needed light on laying
out widgets in Tkinter.

• www.pygame.org The official Pygame site. It contains news, tutorials, reference material, and
sample code.

Raspberry Pi Resources

The official website of the Raspberry Pi Foundation is www.raspberrypi.org. This website contains
a wealth of useful information, and it’s the place to find announcements relating to happenings in the
world of Raspberry Pi.

The forums are particularly useful when you are looking for the answer to some knotty problem.

You can search the forum for information from others who have already tried to do what you are
trying to do, you can post questions, or you can just show off what you’ve done to the community.
When you’re looking to update your Raspberry Pi distribution image, this is probably the best place
to turn. The downloads page lists the distributions currently in vogue.

http://docs.python.org/py3k/
http://www.pythonware.com/library/tkinter/introduction/
http://zetcode.com/gui/tkinter/layout/
http://www.pygame.org/
http://www.raspberrypi.org/

The Raspberry Pi even has its own online magazine, wittily named The MagPi. This is a free PDF
download (www.themagpi.com) and contains a good mixture of features and “how-to” articles that
will inspire you to do great things with your Pi.

For more information about the hardware side of using the Raspberry Pi, the following links are

useful:

• http://elinux.org/RPi_VerifiedPeripherals A list of peripherals verified as working with the
Raspberry Pi.

• http://elinux.org/RPi_Low-level_peripherals A list of peripherals for interfacing with the
GPIO connector.

• www.element14.com/community/docs/DOC-43016/ A datasheet for the Broadcom chip at the
heart of the Raspberry Pi. (This is not for the faint of heart!)

If you are interested in buying hardware add-ons and components for your Raspberry Pi, Adafruit

has a whole section devoted to the Raspberry Pi. SparkFun also sells Raspberry Pi add-on boards
and modules.

Other Programming Languages

In this book, we have looked exclusively at programming the Raspberry Pi in Python, and with some
justification: Python is a popular language that provides a good compromise between ease of use and
power. However, Python is by no means the only choice when it comes to programming the
Raspberry Pi. The Raspbian Wheezy distribution includes several other languages.
Scratch

Scratch is a visual programming language developed by MIT. It has become popular in education
circles as a way of encouraging youngsters to learn programming. Scratch includes its own
development environment, like IDLE for Python, but programming is carried out by dragging and
dropping programming structures rather than simply typing text.

Figure 12-1 shows a section of one of the sample programs provided with Scratch for the game

Pong, where a ball is bounced on a paddle.

http://www.themagpi.com/
http://elinux.org/RPi_VerifiedPeripherals
http://elinux.org/RPi_Low-level_peripherals
http://www.element14.com/community/docs/DOC-43016/

Figure 12-1 Editing a program in Scratch
C

The C programming language is the language used to implement Linux, and the GNU C compiler is
included as part of the Raspbian Wheezy distribution. To try out a little “Hello World”’ type of
program in C, use IDLE to create a file with the following contents:

Save the file, giving it the name hello.c. Then, from the same directory as that file, type the
following command in the terminal:

This will run the C compiler (gcc), converting hello.c into an executable program called just

hello. You can run it from the command line by typing the following:

The IDLE editor window and command line are shown in Figure 12-2, where you can also see the
output produced. Notice that the \n characters create blank lines around the message.

Figure 12-2 Compiling a C program

Applications and Projects

Any new piece of technology such as the Raspberry Pi is bound to attract a community of innovative
enthusiasts determined to find interesting uses for the Raspberry Pi. At the time of writing, a few
interesting projects were in progress, as detailed next.
Media Center (Raspbmc)

Raspbmc is a distribution for the Raspberry Pi that turns it into a media center you can use to play
movies and audio stored on USB media attached to the Pi, or you can stream audio and video from
other devices such as iPads that are connected to your home network. Raspbmc is based on the
successful XBMC project, which started life as a project to use Microsoft Xboxes as media centers.

However, it’s available on a wide range of platforms.

With the low price of the Raspberry Pi, it seems likely that a lot of them will find their way into
little boxes next to the TV—especially now that many TVs have a USB port that can supply the Pi
with power.

You can find out more about Raspbmc at www.raspbmc.com/about/, you can learn about the

XBMC project at www.xbmc.org. All the software is, of course, open source.
Home Automation
Many small-scale projects are in progress that use the Raspberry Pi for home automation, or

domotics as it is also known. The ease with which sensors and actuators can be attached to it, either
directly or via an Arduino, make the Pi eminently suitable as a control center.

Most approaches have the Raspberry Pi hosting a web server on the local network so that a

browser anywhere on the network can be used to control various functions in the home, such as
turning lights on and off or controlling the thermostat.

Summary

The Raspberry Pi is a very flexible and low-cost device that will assuredly find many ways of being
useful to us. Even as just a simple home computer for web browsing on the TV, it is perfectly
adequate (and much cheaper than most other methods). You’ll probably find yourself buying more
Raspberry Pi units as you start to embed them in projects around your home.

Finally, don’t forget to make use of this book’s website (www.raspberrypibook.com), where you

can find software downloads, ways of contacting the author, as well as errata for the book.

http://www.raspbmc.com/about/
http://www.xbmc.org/
http://www.raspberrypibook.com/

Index

Symbols

."" (quotes), defining strings in Python
".""" (double quotes), defining strings in Python
/ (divide), working with numbers in Python Shell
/ (slash), in directory syntax
\ (backslash), as escape character
\ (line-continuation command), breaking line into two lines
+ (addition) operator, using with lists
= (assignment). See assignment (=)
== (comparison operator), in Python

* (multiply), working with numbers in Python Shell

[] (square brackets), in Python syntax for lists

Numbers

12C bus, making accessible to Python

30 Arduino Projects for the Evil Genius (Monk)

A

a (append) file mode
Abiword word processor
actuators, attaching to Raspberry Pi
Adafruit

parts used in LED digital clock project
Pi Cobbler from
Pi Plate from

addition (+) operator, using with lists
alert dialog
animation, benefits of Pygame in creating
append (a) file mode
applications, installing/uninstalling with apt-get command. See also software

apt-get command, installing/ uninstalling applications
Arduino boards

connecting to Raspberry Pi via USB
overview of

Raspberry Pi software and
software for

arithmetic, typing commands in Python shell

arrays, variable
assignment (=)

of string value
using with lists
of value to variable

audio socket, in tour of Raspberry Pi

B

batteries

adding battery box to Magician chassis

caution regarding attaching to Raspberry Pi

Beginning Game Development with Python and Pygame (McGugan)
blit command, for drawing images at coordinates
boot up, Raspberry Pi for first time
breadboard

from Adafruit
attaching jumper wires to

break command, for breaking out of loops
Broadcom chip

datasheet for
System on a Chip from

bumpy case, variable convention
button, adding to LED digital clock

C

C language, included with Raspbian Wheezy distribution
cable connectors, in tour of Raspberry Pi
camel case, variable convention

camera, cable connector for
Canvas interface, Tkinter
case, gathering components for Raspberry Pi setup

cd (change directory) command, for changing current directory
chassis, assembling for robot rover project
Checkbutton widget
classes

creating a Raspberry class
defining
inheritance and

of objects
clock

GPIO pin for

managing speed element of game
software for LED digital clock project

Color Chooser, in GUI

columnconfigure command, in layouts
command line

cd (change directory) command

ls (list) command
overview of
pwd (print working directory) command

sudo (super-user do)
comments, use in Python
comparison operator (==), in Python
connections, GPIO pins
convert method

converters module

coordinates, drawing images at

copytree function, for moving or changing names of files or directories

D

data lines, GPIO pin for
datetime module

def keyword, starting function with
description method, class methods
desktop

booting to

LXDE windowing environment
overview of

dialogs, in GUI

dice simulation, generating random numbers in
dictionaries

functions

overview of
directories

globbing

moving or changing name of
navigating

display

attaching LCD screen to robot rover
gathering components for Raspberry Pi setup
Raspberry Pi video adapters

distros (Linux distributions)

domotics, uses of Raspberry Pi for home automation
Don't Repeat Yourself (DRY) principle, in programming
double quotes ("."""), defining strings in Python
DoubleVar
drawing shapes, with Canvas interface

DRY (Don't Repeat Yourself) principle, in programming
DVI connectors

gathering components for Raspberry Pi setup

Raspberry Pi video adapters

E

educational use, Pi Face expansion board intended for
elif command

else logic, in Python
encapsulation, classes and
equals (=), assigning values to variables
errors, flagging

escape characters, including special characters in strings
Ethernet cable, getting Raspberry Pi online
exceptions

expansion boards

Gertboard expansion board
overview of
Pi Face expansion board

RaspiRobotBoard expansion board
Slice of PI/O expansion board

F

false, logical values in Python

File Browser, creating new files and folders
File Chooser, in GUI
File Explorer, locating files with
File Manager

on Raspberry Pi desktop
viewing available free space

File menu
files

creating

file-system operations on
Internet and
moving or changing name of

overview of
pickling
reading
writing

file-system

floating point numbers
double-precision
working with numbers in Python Shell

folders
creating
moving or changing name of

for in command
for loops, in Python
functions

dictionaries

grouping. See modules lists
numbers
overview of
strings

stubs as stand-in for
type conversion

G

games programming

Hangman game. See Hangman game
Hello World in Pygame
overview of

Pygame library
Raspberry game example. See Raspberry game example

General Purpose Input/Output pins. See GPIO (General Purpose Input/Output) pins
Gertboard expansion board
global variables

use in Hangman game
use in Raspberry game

globbing, for finding out what is in a directory

GNU C compiler, in Raspbian Wheezy distribution
Gnumeric spreadsheet
GPIO (General Purpose Input/ Output) pins

adding button to LED digital clock
connections
expansion boards

Gertboard expansion board
Humble Pi prototyping board
overview of
peripherals that interface with

Pi Cobbler prototyping board
Pi Face expansion board
Pi Plate prototyping board

prototyping boards
RaspiRobotBoard expansion board
Slice of PI/O expansion board
in tour of Raspberry Pi

graphical user interface. See GUI (graphical user interface)
graphics

adding images to games

benefits of Pygame in creating
GUI (graphical user interface)

Checkbutton widget

Color Chooser
dialogs
File Chooser

Hello World in Tkinter
layouts
Listbox widget

menus
overview of
scrollbars
Spinbox widget
temperature converter example
Tkinter

Tkinter Canvas interface
widgets

H

Hangman game

converting to work with files
overview of

hardware

adding range finder to robot rover
Arduino boards
Arduino software and

assembling for LED digital clock project
assembling RaspiRobotBoard kit
assembling robot chassis
attaching LCD screen to robot rover

connecting Arduino boards to Pi via USB
connecting motors to robot rover
expanding LED digital clock project
expansion boards
Gertboard expansion board
GPIO connections

Humble Pi prototyping board
overview of
Pi Cobbler prototyping board

Pi Face expansion board
Pi Plate prototyping board
Pi software and
prototyping boards
RaspiRobotBoard expansion board
Slice of PI/O expansion board

updating software to accommodate hardware added to robot
HDMI (High-Definition Multimedia Interface)

gathering components for Raspberry Pi setup

Raspberry Pi video adapters
in tour of Raspberry Pi

Hello World
in C
in Tkinter

High-Definition Multimedia Interface. See HDMI (High-Definition Multimedia Interface)
home automation, uses of Raspberry Pi
HTML (Hypertext Markup Language)

HTTP (Hypertext Transfer Protocol)
Humble Pi prototyping board
I

IDLE program

accessing
creating new file
editing in Python

running hangman game in
running new programs

if command
images

adding to games

converting and using in Raspberry game
immutability, of tuples, strings, and numbers
importing, creating pygame and
inheritance
init method
input function
input/output (I/O). See GPIO (General Purpose Input/Output) pins

insert command
instances, class
integers, working with numbers in Python Shell
Internet

connecting Raspberry Pi to
resources for Raspberry Pi
web services in Python

I/O (input/output). See GPIO (General Purpose Input/Output) pins

J

jumper wires, attaching to breadboard

K

keyboards
controlling game play with

gathering components for Raspberry Pi setup
keys, to dictionary values
L

layouts, in GUI
LCD screen

attaching to robot rover
cable connector for

LED digital clock. See prototyping project (LED digital clock)
LEDs

on Gertboard expansion board
on Pi Face expansion board
on RaspiRobotBoard expansion board

on Slice of Pi expansion board
len

using with lists
using with strings

libraries

installing for RaspiRobot expansion board
Pygame
standard library of modules

line-continuation command (\), breaking line into two lines
The Linux Command Line: A Complete Introduction (Shotts)
Linux OS

distributions (distros)
Raspberry Pi running
resources for

Listbox widget
lists

functions
overview of

logical values, in Python
looping

for loops
while loops

ls (list) command

LXDE windowing environment
LXTerminal
M

Magician Chassis kit, as basis for robot rover

The MagPi magazine
math module
media center, turning Raspberry Pi into

menus, in GUI
methods, class
micro USB socket, in tour of Raspberry Pi
microcontrollers

Arduino boards as
on Gertboard expansion board

Midori web browser, connecting to Internet via
Mobel B, comparing Raspberry Pi models
modal dialogs
Model A, comparing Raspberry Pi models
modules

converting file into
installing new
object orientation compared with

overview of
standard library of
using

monitors. See display
motor controller

Arduino boards as

in Gertboard expansion board
in RaspiRobotBoard

motors

caution regarding attaching to Raspberry Pi
connecting to robot rover

mouse
controlling game play with

gathering components for Raspberry Pi setup
tracking movement in Raspberry game

multiple assignment

N

networking, connecting Raspberry Pi to Internet
numbers

functions

in Python

O

object orientation
open source, Linux OS as

output. See GPIO (General Purpose Input/Output) pins

P

packages, installing/uninstalling. See also software
parameters, parentheses in syntax of
passwords, sudo (super-user do) and
peripherals

GPIO pin for

verified for use with Raspberry Pi
Pi Cobbler prototyping board

assembling hardware for LED digital clock
overview of

use in LED digital clock project
Pi Face expansion board
Pi Plate prototyping board

pickle module
pickling files
pop command, removing items from lists
power supplies

gathering components for Raspberry Pi setup
in tour of Raspberry Pi

print command

Programming Arduino: Getting Started with Sketches (Monk)
programming languages, included with Raspbian Wheezy distribution
programs. See software
prototyping boards

Humble Pi prototyping board
overview of
Pi Cobbler prototyping board

Pi Plate prototyping board
prototyping project (LED digital clock)

assembling hardware for
creating software for
expanding hardware and software capabilities

overview of
parts needed for

pulse with modulation, GPIO pin for

pwd (print working directory) command, for showing current directory
Pygame

Hello World application in

installing pygame module
library
Raspberry game example. See Raspberry game example
resources for

PySerial package, Python code talking to Arduino and
Python basics

comparison operators
editor for
else logic and

generating random numbers in dice simulation
logical values
for loops

overview of
Python Shell
regular expressions in

resources for
variables
versions of Python
while loops
working with numbers

Python Programming: An Introduction to Computer Science (Zelle)
Python Shell

typing commands in
working with numbers

Python: Visual QuickStart Guide (Donaldson)

Q

quotes (.""), defining strings in Python

R

r (read) file mode

r+ (read and write) file mode
radio buttons, in layouts
randint function

generating random numbers in
in random module

random module

random numbers, generating in dice simulation

range command

range finder, adding to robot rover
Rasbmc, for media center
Raspberry game example

adding raspberries to

catching raspberries and displaying game score
creating a Raspberry class and refactoring
managing speed element of
overview of

tracking movement of mouse in
Raspberry Pi foundation

overview of
website

Raspberry Pi, introduction
booting up for first time
components needed for setting up

resources for
setting up
tour of
what it is

what you can do with it
Raspbian Wheezy

browsing packages available for
Linux distributions with

making 12C bus accessible to Python
programming languages included with
Python versions in
recommended Linux distribution for Raspberry Pi

sparseness of
RaspiRobotBoard expansion board

assembling kit for robot rover project

installing library for
overview of

raw_input function, in Python

RCA video connector
on LCD screen
in tour of Raspberry Pi

read (r) file mode

read and write (r+) file mode
receive (Rx), GPIO pin for
refactoring, Raspberry game example
regular expressions, in Python
resources

for Linux OS

for Python

for Raspberry Pi
return values

functions and

multiple
RGB color
ribbon cable, attaching Pi Cobbler to Raspberry Pi
RJ-45 connectors, connecting Raspberry Pi to Internet

rmtree function, for removing directories
robot rover project

adding range finder

assembling chassis for
assembling RaspiRobotBoard kit
attaching LCD screen to
connecting motors to
installing software for

overview of
parts needed for
testing
updating software to accommodate added hardware

robots, using RaspiRobotBoard as controller
root directories, navigating
root Menu

rowconfigure command, in layouts

Run Module command, running new programs

S

scoring functionality, adding to games
Scratch programming language

languages included with Raspbian Wheezy distribution

Pi Face expansion board integrated with
scrollbars

in GUI
Text widget with

SD card slot, in tour of Raspberry Pi
SD cards

configuring on boot up

gathering components for Raspberry Pi setup
replacing hard drive in Raspberry Pi

selectmode property, Listbox widget
sensors

Arduino boards and
communicating with
ease of attaching to Raspberry Pi

expansion boards and prototyping boards and
serial adapter, for range finder
serial communication, GPIO pin for

serial interface (MCP23S17)

Pi Face expansion board connected via
Slice of Pi expansion board connected via

shutil (shell utility) package, file system functions in

slash (/), in directory syntax
Slice of PI/O expansion board
software

adding for LED digital clock project
Arduino software

expanding LED digital clock project
installing for robot rover project
Raspberry Pi software
updating robot software to accommodate added hardware

soldering

Adafruit modules
prototyping boards requiring

sort, using with lists

speed (or timing), managing speed element of game
Spinbox widget
spreadsheet, Gnumeric

square brackets ([]), in Python syntax for lists
standard library, of modules
sticky attributes, use in layouts

string module
strings

functions

overview of
StringVar
stubs, stand-ins for functions

sudo (super-user do)
super-user do (sudo)
System on a Chip, from Broadcom

T

temperature converter example
Text widget, with scrollbars
timing (speed), managing speed element of game

Tk GUI system
Tkinter

Canvas interface

Checkbutton widget
Color Chooser
creating GUI with
dialogs
File Chooser

Hello World in

layouts in
Listbox widget
menus
resources for
scrollbars in
Spinbox widget
temperature converter example

tkinter module
transmit (Tx), GPIO pin for
true, logical values in Python
try command, file-reading code in
tuples

TV, using as monitor

type conversion functions

U

urllib.request module
USB

connecting Arduino boards to Pi via

for keyboard and mouse
in tour of Raspberry Pi
for Wi-Fi

USB hub

V

values

assigning to strings
assigning to variables
keys to dictionary values
logical values in Python

van Loo, Gert
variables

assignment of value to
global
lists or arrays
in Python
Raspberry class

saving contents to a file (pickling)
viewing variable content

voltage, GPIO pins rated at 3.3V
voltage regulators

on Humble Pi prototyping board

on RaspiRobotBoard expansion board

W

w (write) file mode
web resources, for Python
web scraping

web services, in Python
while loops

in Python

use in Raspberry game
widgets

Checkbutton widget

Listbox widget
overview of
Spinbox widget

Wi-Fi, USB wireless adapter for
windows, resizing

word processors
write (w) file mode

X

XBMC project

