M.E. DEGREE EXAMINATION, 2004

(THIRD SEMESTER)

(ENVIRONMENTAL, STRUCTURAL & WATER RESOURCES ENGINEERING & MANAGEMENT)

WREE - 301 / ENVC - 302 / SEE 200 (B) GIS FOR WATER RESOURCES AND ENVIRONMENTAL SYSTEMS

(Elective)

(Common with Part - Time)

November]

[Time: 3 Hours

Maximum: 60 Marks

Answer any FIVE full questions.
All questions carry equal marks.

- 1. Explain the scope of remote sensing and GIS in water resources systems with suitable examples.
- Give a detailed algorithm for a rain-fall run - off modelling of your choice, highlighting the use of remote sensing inputs.
- "The Veeranam irrigation system performance is planned to be assessed" - Give your detailed programme to carry out the same with an integration of Remote sensing and GIS data.
- Distinguish between water-shed development and water-shed management. Explain the use of GIS for water-shed management.
- 5. "Pichavaram mangroves are to be safeguarded for an ecological system sustenance"
 Explain, how you would carry out this task with the use of R.S. and GIS.
- 6. Write notes on any THREE of the following: $(3 \times 4 = 12)$
 - (a) Geomorphological mapping.
 - (b) Land use mapping.
 - (c) Flood plane zoning
 - (d) Flood inundated area evaluation models.

- 7. Write notes on any THREE of the following: $(3 \times 4 = 12)$
 - (a) Crop yield estimation.
 - (b) Agricultural drought.
 - (c) Catchment area treatment.
 - (d) Reservoir sedimentation.
- 8. Write notes on any THREE of the following: $(3 \times 4 = 12)$
 - (a) Snow melt run off estimation.
 - (b) Urban storm water studies.
 - (c) Non Point source pollution.
 - (d) Solid waste management.

- VI. (a) Describe the ANFIS architecture. How Hybrid algorithm is employed in ANFIS? (6)
 - (b) Explain ANFIS architecture of two input single output sugeno fuzzy inference model.

 (6)
- VII. Explain how ANFIS can be employed to predict future values of a chaotic timeseries with an example. (12)

VIII. Write notes:

- (a) Network architecture.
- (b) Neurons.
- (c) Mc Culloch Pitts Neuron Model
- (d) Hebbian learning. (12)

2

- (ii) Fuzzy sets with a discrete ordered universe.
- (iii) Fuzzy sets with a continuous universe. (9)
- II. (a) Define the terms:
 - (i) Crispness.
 - (ii) Fuzziness.
 - (iii) Convexity. (6)
 - (b) Explain Fuzzy "If Then" rules with suitable examples. (6)
- III. Explain Max min and max product composition

Let $R_1 = "x$ is relevant to y"

 $R_2 = "y \text{ is relevant to z"}$

be two fuzzy relations defined on $X \chi Y$ and $Y \chi Z$ respectively, where X = (1, 2, 3) $Y = (\alpha, \beta, \gamma, \delta)$ and Z = (a, b).

Register Number:

Name of the Candidate

M.E. DEGREE EXAMINATION, 2004

(THIRD SEMESTER)

(WATER RESOURCE ENGINEERING AND MANAGEMENT)

WREE - 302.
NEURO - FUZZY APPLICATIONS IN CIVIL
ENGINEERING

(Common with Part - Time)

(Elective)

November]

[Time : 3 Hours

Maximum: 60 Marks

Answer FIVE full questions.

All full questions carry equal marks.

 $(5 \times 12 = 60)$

- I. (a) Define Neuro fuzzy computing. (3)
 - (b) Give example for
 - (i) Fuzzy sets with a discrete non-ordered universe.

3

Assume R₁ and R₂ can be expressed as the following relation matrices:

$$\mathbf{R_1} = \begin{bmatrix} 0.1 & 0.3 & 0.5 & 0.7 \\ 0.4 & 0.2 & 0.8 & 0.9 \\ 0.6 & 0.8 & 0.3 & 0.2 \end{bmatrix}$$

$$R_2 = \begin{bmatrix} 0.9 & 0.1 \\ 0.2 & 0.3 \\ 0.5 & 0.6 \\ 0.7 & 0.2 \end{bmatrix}$$

Find R, o R,

- IV. Give step by step procedure for the Error Back Propagation Training Algorithm (EBPTA). (12)
- V (a) Explain the construction of a feed forward (Exclusive - OR) XOR 2-layer (3-layer counting input field) neural network, using back propagation (BKP) to train the network. (6)
 - (b) Write about Perception Learning Rule and Competitive Learning Rule. (6)

Name of the Candidate:

M.E. DEGREE EXAMINATION, 2008

(WATER RESOURCES ENGINEERING AND MANAGEMENT / ENVIRONMENTAL ENGINEERING)

(THIRD SEMESTER)

WREE-301. GIS FOR WATER RESOURCES AND ENVIRONMENTAL SYSTEMS AND ENVIRONMENTAL ENGINEERING

(Common with Part Time)

November]

[Time: 3 Hours

Maximum: 60 Marks

(2)

Answer any FIVE questions

- 1. How water resources potential is estimated using GIS and remote sensing application? (12)
- 2. What are Geomorphological studies? How are these studies carried out using GIS and remote sensing?

 (12)
- 3. Draught assessment can be done using evaluation models Comment on this. (12)
- 4. What are the parameters responsible for erosion and deposition in catchment area? How the treatment is due to this? How GIS and RS useful in this studies.
- 5. Give short notes on
 - a) Estimation of sediment load
 - b) Land use mapping
 - c) Snow cover studies

(12)

- 6. What parameters are taken into watershed management and water shed development? How GIS is applied to this area? (12)
- 7. Give notes an GIS application on
 - a) Solid waste management
 - b) Wetlands
 - c) Rainfall runoff modeling.

(12)

8. What are the models available for storm water studies? Comment on the application of GIS in urban storm water studies. (12)

Name of the Candidate:

B.E. DEGREE EXAMINATION, 2008

(WATER RESOURCES ENGG AND MANAGEMENT/ENVIRONMETAL ENGG)

(THIRD SEMESTER)

WREE-206/ENME-301.WATER QUALITY MODELLING

(Elective)

(Common with Part Time)

ANSWER ANY FIVE QUESTIONS

Nov)

(Time: 3 Hours

- Maximum: 60 Marks
- 1. How mathematical models are useful in solving the realtime problems. Give an example of the problems and solve them by any one model. (12)
- 2. Derive the model for oxygen sag and discuss its limitations and applications. (12)
- 3. Describe Lagrangion Model in river Water Quality Studies. (12)
- 4. What are the parameters that affect Lake Water quality? Describe one lake water model along with the above said parameters. (12)
- 5. Define hydraulics of Estuarine Model. How estuarine models are useful in deciding Water Quality? (12)
- 6. Name the different parameters governing ground water quality models. Describe the model for the mass transport in Ground Water. (12)
- 7. Describe the dilution techniques in the discharge of Wastewater in Marine Environment. (12)
