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FUNDAMENTALS OF FLUID FLOW 

 
INTRODUCTION 

 

When a fluid is at rest, the only fluid property of significance is its specific 

weight. On the other hand, when a fluid is in motion, various other fluid 

properties also become significant. Therefore, the nature of flow of a real 

fluid is complex and cannot always be subjected to exact mathematical 

treatment. In such cases where exact mathematical analysis is not possible, 

one has to resort to experimentation. However, if some simplifying 

assumption could be made, the mathematical analysis of flow of fluids is 

possible. 

 

What is Kinematics?     

 

It is the science which deals with the geometry of motion of fluids without 

considering the forces that cause the motion. It involves merely the 

description of motion of fluids in space – time relationship. 

 

What is kinetics?  

 

It is the science which deals with the action of forces in causing the motion 

of fluids.  

 

The study of flow of fluids involves both the kinematics and kinetics.  

 

A fluid is composed of particles which move at different velocities and may 

be subjected to different accelerations. Further, even for a single fluid 

particle, the velocity and acceleration may change both with respect to space 

and time. Therefore, in the study of fluid flow, it becomes imperative to 

observe the motion of fluid particles at different points in space and at 

successive instants of time.  

 

Methods of Description of Motion of Fluid      

 

1. Lagrangian Method: In this method, any individual fluid particle is 

selected and it is followed throughout its course of motion and 

observations are made regarding the behaviour of the particle during 

its course of motion through space. 
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2. Eulerian Method: Any point fixed in space that is occupied by 

flowing fluid particles is taken and observations are made with regard 

to the characteristics such as velocity, density and pressure of fluid at 

successive instants of time. 

 

VELOCITY OF FLUID PARTICLES 

 

The motion of a fluid, like that of a solid, is described in terms of velocity. 

In case of solids, it is sufficient to measure the velocity of the body as a 

whole, as each and every particle composing the solid body moves with the 

same velocity as that of the whole body, whereas in case of a fluid, different 

fluid particles may move with different velocities at different points in space 

and at different points of time. Therefore, how to define the velocity V, at 

any point, of a fluid particle? The velocity of a fluid particle at a point can 

be defined as the ratio of the displacement of the fluid particle along its path 

of motion and the corresponding increment of time as the later approaches 

zero. Mathematically, it can be stated as: 

 

dt

ds
V

dt 0
lim


             …… (1) 

 

where V = velocity of fluid particle at a fixed point P in space occupied by  

                  the fluid in motion 

Let the coordinates of the point P in space be (x, y, z).  

ds = distance traversed by the fluid particle in the immediate vicinity of P 

dt = time taken by the fluid particle to traverse this distance ds    

 

Figure 1 shows the path traced by a fluid particle in motion. The direction of 

the velocity vector V at point P is tangential to the path of fluid particle at P. 

The velocity vector V has three components u, v and w in mutually 

perpendicular directions x, y and z respectively. The components of 

displacement ds of the fluid particle along x, y and z directions are 

respectively dx, dy and dz. Then, we have, 

 

dt

dx
u

dt 0
lim


  , 
dt

dy
v

dt 0
lim


  and 
dt

dz
w

dt 0
lim


    …… (2) 
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The velocity V of a fluid particle at any point is a function of space and time, 

that is, V = f1 (x, y, z, t). Similarly, the velocity components u, v and w are 

also functions of space and time. That is, u = f2 (x, y, z, t); v = f3 (x, y, z, t) 

and w = f4 (x, y, z, t).           
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Figure 1 Velocity at a point in a fluid motion 
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In vector notation, the resultant velocity V may be expressed in terms of its 

components as 

 

wkvjuiV           …… (3) 

 

where, kji ,,  are unit vectors along x, y and z axes respectively.  

 

TYPES OF FLUID FLOW 

 

Steady flow: Fluid flow is said to be steady, if at any point in the flowing 

fluid, the various characteristics such as velocity, pressure, density, 

temperature, etc., that describe the behaviour of fluid in motion, do not 

change with time. In other words, a flow is said to be steady, if the flow 

characteristics are independent of time. However, the flow characteristics 

may be different at different points in space. Mathematically, steady flow 

can be expressed as 

 

0;0;0;0;0 






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


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
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     …… (4) 

 

Unsteady flow: Fluid flow is said to be unsteady if at any point in the 

flowing fluid, one or more flow characteristics that describe the behaviour of 

fluid change with time. That is, 

 

;0




t

V
 and/or 0





t


etc., …… (5) 

 

Uniform flow: When the velocity of flow of fluid does not change, both in 

magnitude and direction, from point to point in the flowing fluid, at any 

given instant of time, the flow is said to be uniform. Mathematically, 

uniform flow can be stated as 

 

0




s

V
   …… (6) 

 

In the above expression, time is held constant; s represents any direction of 

displacement of the fluid elements.  
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Non-uniform flow: When the velocity of flow of fluid changes from point 

to point in the flowing fluid, at any given instant of time, the flow is said to 

be uniform. As velocity is a vector quantity, the change in velocity can occur 

due to change in both magnitude and direction, or due to change either in 

magnitude only or direction only. Mathematically, non-uniform flow can be 

stated as 

 

0




s

V
   …… (7) 

 

All the above four types of flows can exist independent of each other. The 

four types of combinations of above flows that are possible are: 

 

(a) Steady – uniform flow 

(b) Steady – non-uniform flow 

(c) Unsteady – uniform flow 

(d) Unsteady – non-uniform flow 

 

Common example for each of the above combinations of flows: 

 

(a) Flow of liquid through a long pipe line of constant diameter at 

constant discharge rate. 

(b) Flow of liquid through a tapering pipe line (of either increasing or 

decreasing cross-sectional area) at constant discharge rate. 

(c) Flow of liquid through long pipe line of constant diameter at either 

increasing or decreasing discharge rate      

(d) Flow of liquid through a tapering pipe line at either increasing or 

decreasing discharge rate. 

 

Three – dimensional flow: The different flow characteristics such as 

velocity, pressure, mass density and temperature are functions of space and 

time. That is, these characteristics may vary with the coordinates x, y, z of 

any point and time t. Such a flow is known as three – dimensional flow. If 

any of these flow characteristics does not change with respect to time, then it 

will be a steady three - dimensional flow.  

     

Two – dimensional flow: When the flow characteristics of flowing fluid are 

functions of any two of the three co-ordinate directions and time t, that is, 

the flow characteristics are functions of, say, x and y directions and time t, 
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then it is called a two –dimensional flow. In such a case, the flow 

characteristics do not change in z – direction. Further, if any of these flow 

characteristics does not change with time, it will be steady two-dimensional 

flow.  

 

One – dimensional flow: When the flow characteristics of flowing fluid are 

functions of only any one of the three co-ordinate directions and time t, that 

is, the flow characteristics are functions of, say, x direction and time t, then it 

is called a one –dimensional flow. In such a case, the flow characteristics do 

not change in y and z directions. Further, if any of these flow characteristics 

does not change with time, it will be steady one-dimensional flow.  

 

If we consider one of the characteristics of flow, say velocity of flow V, the 

following expressions may be written which clearly indicate the difference 

between the three-dimensional, two-dimensional and one-dimensional flows. 

 

Type of Flow Unsteady Steady 

Three-dimensional ),,,( tzyxfV   ),,( zyxfV   

Two-dimensional ),,( tyxfV   ),( yxfV   

One-dimensional ),( txfV   )(xfV   

  

Similar expressions can be written for other characteristics of flowing fluid 

for the three types of flow mentioned above. 

 

Rotational flow: When the fluid particles while moving in the direction of 

flow rotate about their mass centres, the flow is said to rotational.     

 

Irrotational flow: When the fluid particles while moving in the direction of 

flow do not rotate about their mass centres, the flow is said to irrotational.     

 

Laminar flow: When the various fluid particles move in layers (or laminae) 

with one layer of fluid sliding smoothly over an adjacent layer of fluid, the 

flow is said to be laminar. In the development of laminar flow, the viscosity 

of fluid plays a significant role. Hence, the flow of fluids that have high 

viscosity may be treated as laminar flow. 

 

Turbulent flow: When the fluid particles move in an entirely haphazard or 

disorderly manner resulting in rapid and continuous mixing of the fluid 

particles leading to momentum transfer, the flow of fluid is said to be 
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turbulent. In such a flow eddies or vortices of different shapes and sizes are 

present which move over long distances. The random movement of eddies 

give rise to fluctuations in velocity and pressure at any point in the flow 

field. These fluctuations in velocity and pressure are necessarily functions of 

time. Hence, at any point in the fluid flow, the velocity and pressure are 

functions of time thereby making such a flow unsteady. However, temporal 

mean values of velocity and pressure considered over sufficiently long time 

do not change with time.  

 

It should be noted that the occurrence of turbulent flow is much more 

frequent than the occurrence of laminar flow conditions. Flow in natural 

streams, artificial channels, water supply pipes, sewers, etc., are a few 

examples of turbulent flow.    

 

DESCRIPTION OF THE FLOW PATTERN 

 

The flow pattern of a flowing fluid may be described by the following: 

 

1. Streamline 

2. Stream-tube 

3. Path-line 

4. Streak-line 

 

1. Stream-line: It is an imaginary curve drawn through a flowing fluid 

such that the tangent to the imaginary curve at any point gives the direction 

of the velocity of flow at that point. As a fluid is composed of fluid particles, 

the pattern of flow of fluid may be described a by a series of streamlines. 

This series of streamlines can be obtained by drawing a series of imaginary 

curves through the flowing fluid such that the velocity vector at any point on 

any curve is tangential to the curve.  

 

Figure shows some of the streamlines for a flow pattern in x-y plane. Let us 

consider a streamline passing through point P whose co-ordinates are x and 

y. The direction of velocity vector at point P is tangential to the streamline. 

Let u and v be the components of velocity vector V, along x and y directions 

respectively. Let dx and dy be the components of the differential 

displacement ds along the streamline in the immediate vicinity of P.  

From figure, we have, 
dx

dy

u

v
tan    …… (8) 
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Therefore, we have, 

v

dy

u

dx
  …… (9) 

i.e.,   0..  dxvdyu  

 

The differential equation for streamlines representing three dimensional flow 

can be obtained as  

 

v

dy

u

dx
  = 

w

dz
 …… (10) 
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Figure Streamlines for a flow pattern in x-y plane 
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Can there be flow of fluid across a streamline? No . Why? We have already 

seen that the tangent to the streamline at any point gives the direction of the 

velocity of flow at that point. In other words, as a streamline is everywhere 

tangential to the velocity vector, there cannot be any component of the 

velocity at right angles to the streamline. Hence, there cannot be any flow 

across a streamline.  

 

In case of steady flow, as the direction of velocity vector at any point does 

not change with time, the flow pattern does not change. Hence, the 

streamline pattern remains the same at different times for steady flow. In 

case of unsteady flow, as the direction of velocity vector at any point may 

change with time, the pattern of streamlines may also change from time to 

time.  

 

2. Stream tube. It is an imaginary tube formed by a group of streamlines 

passing through a small closed curve, as shown in Figure. The stream tube is 

bounded on all sides by streamlines and as there is no component of velocity 

normal to any streamline, there cannot be any flow across the bounding 

surfaces. Hence, a fluid can enter or leave the stream tube only at its ends. If 

the cross-sectional area of the stream tube is small such that there is 

insignificant variation of velocity over it, the stream tube is called a stream 

filament.  

 

             
 

3. Path line. It is defined as the imaginary line traced by a single fluid 

particle as it moves over a period of time. A path line indicates the direction 

Stream lines 
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of velocity vector of the same fluid particle at different instants of time. A 

streamline indicates the direction of velocity of a number of fluid particles at 

the same instant of time. A fluid particle always moves tangential to the 

streamline. In case of steady flow, streamlines are fixed in space. Therefore, 

in case of steady flow, both streamlines and path lines are identical.      

 

ACCELERATION OF A FLUID PARTICLE 

 

What is acceleration? 

 

It is defined as the time rate of change of velocity.  

 

Define acceleration of a fluid particle. 

 

The velocity of a fluid particle is a function of space (location of the point 

occupied by the fluid particle) and time. Let a fluid particle in space has a 

velocity V. Let the components of velocity V along the three mutually 

perpendicular directions namely, x, y and z directions be u, v, and w 

respectively. Then,  

 

Acceleration of fluid particle in x – direction, 
dt

du
lima

dt
x

0
      

Acceleration of fluid particle in y – direction, 
dt

dv
lima

dt
y

0
      

Acceleration of fluid particle in z – direction, 
dt

dw
lima

dt
z

0
      

 

We have already stated that the velocity components u, v and w are all 

functions of the space co-ordinates x, y and z and time t. That is,  

 
 
 
 t,z,y,xfw

t,z,y,xfv

t,z,y,xfu







 

  

 

The quantities 
dt

dw

dt

dv
,

dt

du
 and  represent respectively the total derivatives or 

substantial derivatives of the velocity components u, v and w with respect to 

time.  
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Let us consider the total derivative .
dt

du
  As the velocity component u is a 

function of x, y, z and t, 
dt

du
 can be expressed as 

 

dt

dt

t

u

dt

dz

z

u

dt

dy

y

u

dt

dx

x

u

dt

du



















   

 

Here, the partial derivative, 
x

u




 represents the variation in velocity 

component u with respect to x – coordinate only. Similarly, the partial 

derivatives 
z

u

y

u








 and  represent the variation in velocity component u with 

respect to y- coordinate and z – coordinate respectively.  

 

Also, it has been shown that, 

 

u
dt

dx
lim

dt


0
  

v
dt

dy
lim

dt


0
 

w
dt

dz
lim

dt


0
 

 

Hence, taking limits on both sides of the expression for total derivative of 

velocity component u with respect to t, we have,    

 

dt

dt
lim

t

u

dt

dz
lim

z

u

dt

dy
lim

y

u

dt

dx
lim

x

u

dt

du
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dtdtdtdtdt 00000  







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
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
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
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














  ……   (11)  

 

By adopting the same procedure as above, the following expressions for 

other two components of acceleration namely, ay along y – direction and az 

along z – direction are obtained.  
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


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
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




  ……   (13) 

 

Equations (11), (12) and (13) represent the expressions for the components 

of acceleration of a fluid particle in the three mutually perpendicular 

directions namely, x, y and z. In these expressions, the quantities 

  and 
t

w

t

v
,

t

u












represent respectively the time rate of change of velocity 

components u, v and w with respect to time t at a particular point in the flow 

space. Hence, the quantities   and 
t

w

t

v
,

t

u












are known as local accelerations 

or temporal (of time) accelerations. The remaining quantities 

   ,
z

u
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y

u
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x

u












   ,
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











z

w

y

w
,

x

w












 and  represent the variation in velocity 

components of fluid particle due to change in position of fluid particle. 

Hence, these quantities are called convective accelerations.  

 

If the flow of a fluid particle is steady, then we have local acceleration equal 

to zero. That is, 0 0 0 














t

w
;

t

v
;

t

u
. When the flow of fluid article is 

steady, the convective acceleration need not be zero. Hence, the total 

acceleration or substantial acceleration need not be zero. However, in case 

the flow is uniform in addition to steady (steady-uniform flow), then the 

convective accelerations are also zero. Therefore, the total acceleration of 

fluid particle is also zero.      

 

As velocity, acceleration is also a vector quantity. But, unlike velocity 

vector, the acceleration vector has no specific orientation with respect to the 

streamline, that is, acceleration vector need not be always tangential to the 

streamline as the velocity vector. In other words, acceleration vector may 

have any direction so that at any point it has components both tangential and 

normal to the streamline.  

 

When is a tangential acceleration developed? 

 

The tangential acceleration for a fluid particle is developed when the 

magnitude of the velocity changes with respect to space and time.  
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When is a normal acceleration developed? 

 

The normal acceleration for a fluid particle is developed when the fluid 

particle moves in a curved path along which the direction of velocity vector 

changes. A normal acceleration may be due to the change in the direction of 

the velocity of the fluid particle irrespective of whether the magnitude of the 

velocity vector changes or not.  

 

Example 1. In a steady flow two points A and B are 0.5 m apart on a straight 

streamline. If the velocity of flow varies linearly between A and B what is 

the acceleration at each point if the velocity at A is 2 m s-1 and the velocity at 

B is 6 m s-1. 

 

Solution.  

 

   

 

Let the straight streamline be oriented in X – direction. As the streamline is 

oriented in a unique direction (X – direction), the acceleration of the fluid 

flow is in only X – direction. There are no components of acceleration is the 

other two mutually perpendicular directions namely, Y – direction and Z – 

direction. In other words, the fluid flow has only acceleration component 

along X – direction and no acceleration components in the other two 

directions. That is, the fluid flow has ax, while ay and az are zero.   

 

The general form of expression for ax is given by 
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uax
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 A  B 

 uA = 2 m s-1  uB = 6 m s-1 

 dx = 0.5 m 

 Straight streamline  

 X - direction 
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When the flow is steady, the velocity component u does not undergo any 

change with respect to time. Hence, the above expression reduces to  

 

z

u
w

y

u
v

x

u
uax














    

 

Further for steady flow with straight streamlines (oriented in X – direction), 

there is no change in velocity component u in Y and Z directions. Hence, the 

above equation reduces to  

 

         
x

u
uax



  

 

Here, uA = velocity of flow at point A (in X – direction) = 2 m s-1 

          uB = velocity of flow at point B (in X – direction) = 6 m s-1 

         












Ax

u
change in velocity of flow at point A in X – direction with  

                                                              respect to distance along X – direction 

 

As the velocity of flow varies linearly between A and B,  

        

          












Ax

u 1 8
50

26 





s
.dx

uu AB      

 

Hence, acceleration of flow at point A in X – direction is given by 

 

                2-1-1-  16   8 x  2 m ssm s
x

u
ua

A
AAx 












             

Let 












Ax

u
change in velocity of flow at point B in X – direction with  

                                                              respect to distance along X – direction 

  













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u 1 8
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26 





s
.dx

uu AB      

 

Hence, acceleration of flow at point B in X – direction is given by 
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                2-1-1-  48   8 x  6 m ssm s
x

u
ua

B
BBx 












             

 

Example 2. A nozzle is so shaped that the velocity of flow along the 

centerline changes linearly from 1.5 m s-1 to 15 m s-1 in a distance of 0.375 

m. Determine the magnitude of the convective acceleration at the beginning 

and end of this distance. 

 

Solution.  

 

   

In a steady flow when the streamlines are straight and converging then there 

will only be convective tangential acceleration, as. The convective normal 

acceleration, an, is zero. The expression for as is given by 

 

s

V
Va s

ss



   

 

Let   Asa convective tangential acceleration at A 

        Bsa  convective tangential acceleration at B 

        AsV  velocity component along tangential direction = VA = 1.5 m s-1 

        BsV  velocity component along tangential direction = VB = 15 m s-1 

      












s

Vs  change in velocity component Vs due to change in the position  

                    of the fluid particle  

                  = 
   

mm s
.

.

ds

VV AsBs
per   36

3750

5115 1-





 

 A  B 

 Straight converging streamlines  

 AB - Straight streamline along  

          the centreline of nozzle  

 VA = 1.5 m s-1  VB = 15 m s-1 

 ds = 0.375 m 
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  Asa  AsV 












s

Vs  (1.5 m s-1) x (36 m s-1 per m) = 54 m s-2 

  Bsa  BsV 












s

Vs (15 m s-1) x (36 m s-1 per m) = 540 m s-2 

 

CONTINUITY EQUATION 

 

The continuity equation represents the mathematical statement of the 

principle of conservation of mass. Let us consider a fixed region in space 

within a flowing fluid. As per the principle of conservation of mass, fluid 

can neither be created nor be destroyed within this fixed region in space. 

Hence, the time rate of increase of mass of fluid within the fixed region must 

be equal to the difference between the rate at which fluid mass enters the 

fixed region and the rate at which the fluid mass leaves the fixed region. If 

the flow is steady, the time rate of increase of mass of fluid within the fixed 

region is zero and the rate at which the fluid mass enters the fixed region is 

equal to the rate at which the fluid mass leaves the fixed region.  

 

Let us consider an elementary rectangular parallelepiped with sides of length 

x, y and z as shown in Figure below. Let O denote the centre of the 

parallelepiped. Let the coordinates of the point O be (x, y, z). Let the 

components of velocity of fluid at point O in x, y and z directions be 

respectively u, v and w. Let  be the mass density of fluid. Let the face 

PQRS oriented perpendicular to the x – direction passes through the centre O 

of the parallelepiped.  

 

Mass of fluid passing per unit time through the central face PQRS, in x - 

direction = (mass density of fluid) x (component of velocity in x – direction) 

x (area of central face PQRS defined perpendicular to the x – direction) 

=  u (y z) 

 

Let us consider that the mass of fluid flowing through the parallelepiped per 

unit time varies in x – direction.  

 

Hence, mass of fluid flowing per unit time through the left face ABCD of the 

parallelepiped, in x - direction = mass of fluid flowing per unit time through 

the central face PQRS, in x – direction + variation in mass of fluid flowing 
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per unit time, in x – direction, in a length equal to 
2

x
between the left face 

ABCD and the central face PQRS 

=   














2

x
zyu

x
zyu


 )(     

In the above expression, the negative sign prefixing the length 
2

x
indicates 

that the face ABCD is situated to the left of the central face PQRS in which 

the centre O of the parallelepiped lies.  

 

Similarly, mass of fluid flowing per unit time through the right face EFGH 

of the parallelepiped, in x – direction = mass of fluid flowing per unit time 

through the central face PQRS, in x – direction + variation in mass of fluid 

flowing per unit time, in x – direction, in a length equal to 
2

x
between the 

central face PQRS and the right face EFGH 

=   













2

x
zyu

x
zyu


 )(     

Net mass of fluid that has remained in the parallelepiped per unit time 

between the pair of faces ABCD and EFGH =  

(Mass of fluid flowing per unit time through the left face ABCD of the 

parallelepiped, in x – direction) – (Mass of fluid flowing per unit time 

through the right face EFGH of the parallelepiped, in x – direction) = 

 

  






















2

x
zyu

x
zyu


 )(  -   






















2

x
zyu

x
zyu


 )(  

=   













2

x
zyu

x
zyu


 )(  -   














2

x
zyu

x
zyu


 )(  

= - 2   












2

x
zyu

x


  

=   xzyu
x





   

=   zyxu
x





  …… (14) 

The area zy  is taken out of the parentheses since it is not a function of x. 

The quantity ( zyx  ) represents the volume of the parallelepiped.  
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In a similar manner, one can obtain the values of net mass of fluid that has 

remained in the parallelepiped per unit time through the other two pairs of 

faces of the parallelepiped. 

 

Net mass of fluid that has remained in the parallelepiped per unit time 

between the pair of faces ABFE and DCGH =  

(Mass of fluid flowing per unit time through the front face ABFE of the 

parallelepiped, in y – direction) – (Mass of fluid flowing per unit time 

through the rear face DCGH of the parallelepiped, in y – direction) = 

 

  






















2

y
zxv

y
zxv


 )(  -   






















2

y
zxv

y
zxv


 )(  

=   













2

y
zxv

y
zxv


 )(  -   














2

y
zxv

y
zxv


 )(  

= - 2   












2

y
zxv

y


  

=   yzxv
y





   

=   zyxv
y





      …… (15) 

The area zx  is taken out of the parentheses since it is not a function of y. 

            

Net mass of fluid that has remained in the parallelepiped per unit time 

between the pair of faces ADHE and BCGF =  

(Mass of fluid flowing per unit time through the bottom face ADHE of the 

parallelepiped, in z – direction) – (Mass of fluid flowing per unit time 

through the top face BCGF of the parallelepiped, in z – direction) = 

 

  











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



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
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yxw

z
yxw
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
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




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




2

z
yxw

z
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
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=   



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




2

z
yxw
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yxw

z
yxw


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= - 2   











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z
yxw
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
  

=   zyxw
z





   

=   zyxw
z





      …… (16) 
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The area yx  is taken out of the parentheses since it is not a function of z. 

            

The net total mass of fluid that has remained in the parallelepiped per unit 

time can be obtained by summing up the net mass of fluid that has remained 

in the parallelepiped between the pairs of faces ABCD and EFGH, ABFE 

and DCGH, and ADHE and BCGF.  

 

Net total mass of fluid that has remained in the parallelepiped per unit time =  

(14) + (15) + (16) =   











 zyxu

x
  +   












 zyxv

y
   












 zyxw

z
   

 …… (17)  

Mass of fluid in the parallelepiped = (Mass density of fluid) x  

                                                                               (Volume of parallelepiped)   

                                                        =  zyx    
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Figure: Fluid element with forces acting on it in a static mass of fluid 
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Time rate of change of mass of fluid in the parallelepiped =   zyx
t





   

          …… (18) 

As per the law of conservation of mass, the net total mass of fluid that has 

remained in the parallelepiped per unit time (given by Eq. (17)) must equal 

the time rate of change of mass of fluid in the parallelepiped (given by Eq. 

(18)) 

 

  











 zyxu

x
  +   












 zyxv
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










 zyxw

z
  =   zyx

t





 

   zyx
t





 +   




zyxu

x
   




zyxv

y
   0




zyxw

z
  

  



zyx

t


  
 




zyx

x

u


  
 




zyx

y

v


  
 zyx

z

w







 = 0 

 

Dividing the expression by the volume of the parallelepiped,  zyx    , 

 
     

0



















z

w

y

v

x

u

t


 …… (19) 

 

Equation (19) gives the continuity equation in its most generalized form, 

applicable to steady or unsteady flow, uniform or non-uniform flow, in three 

dimensions, of both compressible as well as incompressible fluid. 

 

If the flow is steady, 
t


= 0, hence, Eq. (6) reduces to the form, 

     
0















z

w

y

v

x

u 
  …… (20)    

 

Further, if the flowing fluid is incompressible, Eq. (20) reduces to the form, 

 

0














z

w

y

v

x

u
   …… (21)   

 

For flow of fluid (compressible or incompressible) in two-dimensions (2-D 

flow), the continuity equation in its most generalized form, applicable to 

steady or unsteady flow, uniform or non-uniform flow, is given by 
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   
0















y

v

x

u

t


 …… (22) 

 

In writing Eq. (22), it is assumed that the flow characteristics do not vary in 

the z – direction and they vary only in the other two mutually perpendicular 

reference directions x and y. 

 

For steady two-dimensional flow of a compressible fluid, Eq. (22) reduces to 

the form, 

 
   

0









y

v

x

u 
 …… (23) 

 

For steady two-dimensional flow of an incompressible fluid, Eq. (23) 

reduces to the form, 

 

y

v

x

u









 = 0 …… (24)  

 

The continuity equation for one-dimensional flow, in its most generalized 

form, applicable for steady or unsteady flow, uniform or non-uniform flow, 

of both compressible and incompressible fluid can be written as: 

 
 

x

u

t 






 
 = 0 …… (25) 

 

In writing Eq. (25), it is assumed that the flow characteristics are functions 

of only x – direction and they do not vary in the other two mutually 

perpendicular reference directions, y and z.  
 

Further, if the flow is steady, Eq. (25) reduces to the form,    

 
 

x

u



 
 = 0 …… (26)  

 

Further, if the flowing fluid is incompressible, Eq. (26) reduces to the form, 

 

x

u




 = 0 …… (27) 
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The continuity equation in the above form does not contain the area of flow 

passage. Hence, the continuity equation derived is applicable in case of flow 

in which the flow passage has a uniform cross-sectional area. In fact, a true 

one-dimensional flow would occur only in case of a straight flow passage 

that has uniform cross-sectional area. However, one-dimensional flow may 

also be assumed to occur in case of straight or curved flow passage with 

varying cross-sectional area provided the velocity of flow is uniform at each 

section of flow passage.  

  

Continuity Equation for One-dimensional Flow Containing Variation of 

Cross-sectional Area of the Flow Passage   

 
AV = constant …… (28) 

 

 1A1V1 =  2A2V2 =  3A3V3 = ……. = constant ……(28a) 

 

where 1, 2, 3, ……, represent mass density of fluid at cross sections 1, 2, 

3, …… respectively. A1, A2, A3, ……, represent area of cross-section of flow 

passage at sections 1, 2, 3, ……, respectively. V1, V2, V3, ……, represent 

mean velocity of flow at sections 1, 2, 3, ……, respectively. Equation (28a) 

represents thus represents the continuity equation applicable for a steady 

one-dimensional flow of compressible as well as incompressible fluids.  

 

1 

1 

2 

2 

3 

3 
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When the flowing fluid is incompressible, the mass density of fluid does not 

change with time and space. That is, mass density of fluid remains a 

constant. Hence, equation (28a) becomes 

 

A1V1 = A2V2 =  A3V3 = …… = constant ...... (28b) 

 

where A1, A2, A3, ....., and V1, V2, V3 are as defined earlier.  

 

The product of area of cross section of flow passage, A, and mean velocity 

of flow, V, gives the discharge or the volume of fluid flowing per unit time 

through any section. The SI unit of discharge is m3/s. Therefore, equation 

(18a) can be written as 

 

Q = A1V1 = A2V2 =  A3V3 = …… = constant ...... (28c) 

 

Equation (28c) represents the equation of continuity applicable to a steady 

one-dimensional flow of incompressible fluid.  

 

Example 3. Determine which of the following pairs of velocity components 

u and v satisfy the continuity equation for a two-dimensional flow of an 

incompressible fluid. 

 

(a) CyvCxu  ;    

(b) )32();3( yxvyxu     

© )();( 2 yxvyxu   

(d) xyAvxyAu sin;sin   

(e) xyvyxu 3;32 22   

 

Solution. 

 

The continuity equation in differential form for a steady two-dimensional 

flow of an incompressible fluid can be written as 0









y

v

x

u
 

Here, it is assumed that the flow characteristics vary only in the two co-

ordinate directions x and y. 

 

(a) CyvCxu  ;  
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C
x

u





; C

y

v





 

Hence, 0)( 








CC

y

v

x

u
 

So, the given pair of velocity components u and v satisfies the continuity 

equation for two-dimensional flow of an incompressible fluid.  

 

(b) )32();3( yxvyxu   






x

u
3; 





y

v
3 

Hence, 0633 









y

v

x

u
 

Hence the velocity components u and v do not satisfy the continuity equation 

for two-dimensional flow of an incompressible fluid.  

 

©  )();( 2 yxvyxu   






x

u
1; 





y

v
-1 

Hence, 0)1(1 









y

v

x

u
 

So, the given pair of velocity components u and v satisfies the continuity 

equation for two-dimensional flow of an incompressible fluid.  

 

(d) xyAvxyAu sin;sin   






x

u
)(cos)(cos xyAyyxyA   






y

v
)(cos)cos( xyAxxxyA   

Hence, 









y

v

x

u
)(cos xyAy )(cos xyAx 0  

(e) xyvyxu 3;32 22   






x

u
2(2x) = 4x 






y

v
-3x 

Hence, 









y

v

x

u
4x + (-3x) = x 
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Example 4. Calculate the unknown velocity components so that they satisfy 

the continuity equation for three-dimensional flow of an incompressible 

fluid   

 

(a) ?;;2 2  wxyzvxu   

(b)     ?;24;22 32  vyzxzzwxyxu  

 

Solution.  

 

The continuity equation in its differential form applicable to three –

dimensional flow of an incompressible fluid is given by 

 

0














z

w

y

v

x

u
   

 

(a) ?;;2 2  wxyzvxu  

 xzxz
y

v
xx

x

u










)1(;4)2(2  

Substituting the values of 
x

u




 and 

y

v




 in the continuity equation mentioned 

above, we have, 

04 





z

w
xzx  

 xzx
z

w





4  

    dzxzxw 4  = ),(4 2 yxfxzxz   

 

(b)     ?;24;22 32  vyzxzzwxyxu  

 

yxzyxz
z

w
yxyx

x

u
243)1(2)1(43;24)1(2)2(2 22 









 

Substituting the values of 
x

u




 and 

z

w




 in the continuity equation mentioned 

above, we have, 
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





y

v
yx )24(  yxz 243 2   = 0 

 22 324324 zyxzyx
y

v





 

   ),(3),()(3.3 222 zxfyzzxfyzdyzv  

 

Example 5. A pipe of diameter 0.2 m increases gradually to 0.3 m. If it 

carries 0.08 m3 s-1 of water, what are the velocities at the two sections? 

 

Solution.  

 

                         
 

Diameter of pipe at section 1, D1 = 0.2 m 

Area of cross-section of pipe at section 1, A1 =    22
1 2.0

44


D 0.0314 m2 

Diameter of pipe at section 2, D2 = 0.3 m 

Area of cross-section of pipe at section 2, A2 =    22
2 3.0

44


D 0.0707 m2 

Applying equation of continuity between sections 1 and 2 

 

2211 VAVAQ   

 0.08 m3s-1 = (0.0314 m2)V1 = (0.0707 m2)V2 

 V1 = 
1-ms 548.2

0314.0

08.0
  and V2 = 

1-ms 131.1
0707.0

08.0
  

 

Example 6. Water flows through a branching pipeline as shown in the 

figure. If the diameter, D2, is 250 mm, V2 = 1.77 m s-1 and V3 = 1.43 m s-1, 

find (a) diameter, D3, required for Q3 = 2Q2 and (b) the total discharge at 

section 1. 

 

1 2 Q = 0.08 m3s-1 
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Pipe 1 of diameter D1 branches into two pipes namely, pipe 2 of diameter D2 

and pipe 3 of diameter D3. Let the mean velocity of flow in pipe 1 be V1. The 

mean velocities of flow in pipe 2 and pipe 3 are respectively V2 = 1.77 m s-1 

and V3 = 1.43 m s-1. Let the flow in pipe 1 be Q1. The flows in pipe 2 and 

pipe 2 be Q2 and Q3 respectively.  

 

Applying equation of continuity, we have, 

 

Discharge in pipe 1 = Discharge in pipe 2 + Discharge in pipe 3 

 

i.e., 321 QQQ    ……  (29) 

 

(a) Diameter, D3, required for Q3 = 2Q2 

 

Putting Q3 = 2Q2 in (29), we have, 

 

2221 32 QQQQ    …… (30) 

 

Diameter of pipe 2, D2 = 250 mm = 0.250 m  

Area of cross-section of pipe 2, A2 =    22
2

25.0
44


D  0.0491 m2 

Mean velocity of flow in pipe 2, V2 = 1.77 m s-1 

 

Hence, discharge in pipe 2, Q2 = A2V2 = (0.04191 m2) x (1.77 m s-1) 

                                                              = 0.0869 m3 s-1  

Q3 = 2Q2 = 2 x 0.0869 m3s-1 = 0.174 m3s-1 

1 

2 

3 

V1 

V2 

V3 

Pipe 1 

Pipe 2 

Pipe 3 
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 Q3 = 0.174 m3s-1 = A3V3 = A3 (1.43 m s-1) 

 A3 = 
1-

1-3

2

3

s m 43.1

sm 174.0

V

Q
0.122 m2 

 A3 = 0.122 m2 = 2
34

D


 

 D3 = 


2m 0.122 x 4
0.394 m 

 

 (b) Total discharge in pipe 1, Q1 

 

321 QQQ   = 0.0869 m3s-1 + 0.174 m3s-1 = 0.261 m3s-1 

  

Assignment Problem 1. Water flows through the branching pipe shown 

below. Given the following information, find the diameter of the pipe, D2, 

required at section 2 to maintain continuity of flow.  

 

            
 

 

 

Assignment Problem 2.  Two separate pipelines (1 and 2) join together to 

form a larger pipeline (3). It is known that D1 = 0.2 m, D2 = 1.0 m, Q2 = 0.23 

m3 s-1 and Q3 = 0.35 m3 s-1 (a) What is the value of Q1, V1 and V2? (b) If V3 

must not exceed 3.00 m s-1, what is the minimum diameter, D3, which can be 

used? 

1 

2 

3 

V1 

V2 

V3 

Pipe 1 

Pipe 2 

Pipe 3 
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VELOCITY POTENTIAL 

 

The velocity potential is defined as the scalar function of space and time 

such that its negative derivative with respect to any direction gives the fluid 

velocity in that direction. Velocity potential is denoted by the Greek symbol 

 (‘phi’).  

 

Mathematically, the velocity potential for unsteady flow is defined as  

 
 tzy,xf  , ,    

 

For steady flow, velocity potential is defined as  

 
 zy,xf  ,   

 

such that  

 

w
z

v
y

u
x

























         …… (31)

 

 

where u, v and w are components of velocity in the x, y and z directions 

respectively.  

 

What is the significance of the negative sign in the above expressions? 

 

The negative sign denotes that the velocity potential  decreases with an 

increase in the values of x, y and z. In other words, it indicates that the flow 

is always in the direction of decreasing . 

 

The continuity equation in three dimensions for steady flow of an 

incompressible fluid is given by 

 

0














z

w

y

v

x

u
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Putting 
z

w;
y

v;
x

u
















   in the above expression, we have, 

 

0





















































zzyyxx


 

 0
2

2

2

2

2

2

















zyx


 

 0
2

2

2

2

2

2
















zyx


       …… (32) 

 

The above equation is known as the Laplace equation. This may be 

expressed in vector notation as 

 

02    

 

It is evident that any function  that satisfies the Laplace equation will 

correspond to some case of fluid flow.  

 

For a rotational flow, the components of rotation are given by 

 

 




















y

u

x

v
z

2

1
  

Putting 
z

w;
y

v;
x

u
















   in the above expressions for x, y and 

z we have, 

 




































































yzzyyzzy
x




22

2

1

2

1
 




































































zxxzzxxz
y




22

2

1

2

1
 

  
 

 
  
 

 

 

 
 

 

 
 

  
 

 
  
 

 

 

 
 

 

 
 
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w 

z 
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w 

y 
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1 
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1 

 
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


































































xyyxxyyx
z




22

2

1

2

1
 

 

However, if  is a continuous function then  

 

;
yzzy 






  22

 ;
zxxz 






  22

 
xyyx 






  22

 

Therefore, x = y = z = 0 that is, the flow is irrotational.  

 

Hence, it can be stated that any function  that satisfies the Laplace equation 

is a possible case of irrotational flow since the continuity equation is 

satisfied. In other words, velocity potential exists only for irrotational flows. 

Hence, often an irrotational flow is known as potential flow.   

 

Example 7. Determine which of the following fields represent possible 

example of irrotational flow: 

 

(a) CyvCxu  ;   

(b) xyCv
y

Cx
u log;   

©   







 22

2

1
2; ByAxyvBxyAxu  

 

Solution: If at every point in the flowing fluid the rotation components 

about the x, y and z axes, x, y, and z respectively are zero, the flow is said 

to be irrotational.  

 

The rotation components are given by 
























































y

u

x

v

x

w

z

u

z

v

y

w
zyx

2

1
;

2

1
;

2

1
  

As x = 0, we have, 
z

v

y

w

z

v

y

w



















0  

As y = 0, we have, 
x

w

z

u









 = 0  

z

w

z

u









 

 

As z = 0, we have, 
y

u

x

v









 = 0  

y

u

x

v









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(a) CyvCxu  ;   

y

u




 = 0; 

x

v




 = 0 

Hence, 
y

u

x

v









 = 0; i.e., z = 0 

Hence, CyvCxu  ;  represent possible example of irrotational flow. 

 

(b) xyCv
y

Cx
u log;   

y

u




 =   ),()( 111 zxfyCxCxy

yy

Cx

y


















    

                                                            = ),(
1

2
zxf

y
Cx 














  

                                                            = ),(
1

2
zxf

y
Cx 














 

x

v




 =  xyC

x
log




 = C   ),(

1
),(

1
log zyf

x
Czyfy

xy
Cxy

x






















 

As 
y

u




  

x

v




, z  0; hence the velocity fields do not represent possible case 

of irrotational flow and they represent a possible case of rotational flow. 

 

©   







 22

2

1
2; ByAxyvBxyAxu  

y

u




 =   BxBx  )1(0  

x

v




 =   AyAy 20)1(2   

 

As 
y

u




  

x

v




, z  0; hence the velocity fields do not represent possible case 

of irrotational flow and they represent a possible case of rotational flow. 

 

Example 8: Calculate the velocity components u and v for the following 

velocity potential functions: 

 

(a) yx       
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(b) 22 yx   [Assignment] 

(c) 
22 yx

Ax


  

(d) yxsinsin  

(e)  yx log  [Assignment] 

 

Which of these velocity potential functions satisfy the continuity equation? 

 

Solution.  

 

(a) yx   

  1








 yx

xx
u


 

1)( 








 yx

yy
v


 

For a steady two – dimensional flow of an incompressible fluid, the Laplace 

equation must be satisfied. That is, 0
2

2

2

2











yx


  

The continuity equation for steady two-dimensional flow of an 

incompressible fluid may be written as: 

 

0









y

v

x

u
   

x

u




 = 0; 

y

v




 = 0 

Hence, 0









y

v

x

u
 + 0 = 0 

Therefore, the velocity potential function, yx  ,  satisfy the continuity 

equation. 

 

(c) 
22

yx

Ax


  

xx
u


























 22
yx

Ax
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This is of the form: 













q

p

x
 














q

p

x
 = 

2
q

x

q
p

x

p
q 


























 

Here,  22; yxqAxp   

Hence, 
x


















 22
yx

Ax
 =  

     

 222

2222

yx

yx
x

AxAx
x

yx














  

         = 
   

 222

22 2

yx

xAxAyx




   

         = 

 222

222 2

yx

AxAyAx




   

                                                     = 

 222

22

yx

AyAx




 = 

 
 222

22

yx

yxA




 

yy
v


























 22
yx

Ax
 = 

     

 222

2222

yx

yx
y

AxAx
y

yx














  

                                                     = 
   

 222

22 20

yx

yAxyx




  

                                                     = 

 222

2

yx

Axy



 

Solution incomplete 

 

(d) yxsinsin  

xx
u












 yxsinsin   

This is of the form:  pq
x


     
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 pq
x


 = 

x

p
q

x

q
p









  

Here, yqxp sin;sin    

Therefore, 
x


  yxsinsin  =    

















 x

x
yy

x
x sinsinsinsin  

          =  )(cossin)0(sin xyx    

          = yxsincos  

yy
v












 yxsinsin  =    

















 x

y
yy

y
x sinsinsinsin   

         =  )0(sin)(cossin yyx    

         = yxcossin   

 

Solution incomplete  
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STREAM FUNCTION 

 

The stream function is defined as a scalar function of space and time such 

that its partial derivative with respect to any direction gives the velocity 

component at right angles taken in the counterclockwise direction to this 

direction. It is denoted by the symbol  (Greek ‘psi’).  

 

Let us consider the stream function for the case of two-dimensional flow. 

Mathematically, for unsteady flow, stream function may be defined as 

 
 tyxf ,,    

 

For steady flow, stream function may be defined as 

 
 yxf ,  

 

and 

 

v
x





           

u
y





         …… (33) 

 

Let us compare equations (31) and (33) 

 

From (31), 
x

u



  and 

y
v




  

Putting the expression for u and v from (31) in (33), we have, 

 

y
v

x 







         ….. (34) 

 u
y





 = 














x
 = 

x


       …… (34) 

 

Equations (34) are known as Cauchy-Rieman equations and they enable the 

computation of stream function if the velocity potential is known or vice-

versa in a potential flow.  
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Let us substitute the values of u and v from (33) in the expression for 

rotation component z, we have, 

 




















































































2

2

2

2

2

1

2

1

2

1

yxyyxxy

u

x

v
z      …… (35) 

 

Equation (35) is known as Poisson’s equation. For an irrotational flow, since 

z = 0, equation (35) becomes 

 





















2

2

2

2

2

1

yx
 = 0 






















2

2

2

2

yx
 = 0        …… (36) 

 

Equation (36) is known as the Laplace equation for .  

 

Substituting the values of u and v from equation (33) in the equation of 

continuity for two-dimensional steady flow of an incompressible fluid, we 

get, 

 

0


































xyyx
  

 0
22












xyyx
 

 
xy

2

 = 
yx

2

 

 

This will be true only if  is a continuous function and its second derivative 

exists. Hence, it may be stated that any function  which is continuous is a 

possible case of fluid flow (which may be rotational or irrotational) since the 

continuity equations is satisfied.    

 

If the stream function  satisfies the Laplace equation, then it is a possible 

case of irrotational flow.     
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Example 6. Which of the following stream function  are possible 

irrotational flow fields? 

 

(a) 2ByAx   

(b) 22 yAx  

© xyAsin  

(d) 









y

x
Alog  

(e)  22 xy   

 

Solution. For a two-dimensional irrotational flow, since the rotation 

component z = 0, we have,  

 

0
2

1

2

2

2

2


























yx
z


  

  0
2

2

2

2

























yx


 

The above equation is called the Laplace equation for the stream function  

of two-dimensional irrotational flow.  

 

(a) 2ByAx  

A
x





; 




2

2

x


 0 

ByyB
y

2)2( 



 

B
y

2
2

2




 
 

Therefore, 020
2

2

2

2
























B

yx


 

i.e., the given stream function does not represent a possible irrotational flow 

field. 

 

(b) 22 yAx  
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22 2)2( AxyxAy
x





 






2

2

x

 22 2)1(2 AyAy   

yAxyAx
y

22 2)2( 



 

22

2

2

2)1(2 AxAx
y




 
 

Therefore, 022 22

2

2

2

2
























AxAy

yx


 

i.e., the given stream function does not represent a possible irrotational flow 

field. 

 

© xyAsin  

)cos().cos( xyAyyxyA
x





 






2

2

x


)(sin)sin( 2 xyAyyxyAy   

)cos()cos( xyAxxxyA
y





 

)sin()sin( 2

2

2

xyAxxxyAx
y




 
 

Therefore, 























2

2

2

2

yx


 )cos(xyAx  + [ )sin(2 xyAx ]  0 

i.e., the given stream function does not represent a possible irrotational flow 

field. 

 

(d)  









y

x
Alog  






x


 

x

A

x

y

y

A

yyx
A 
























 1

/

1
 

   
2

2111

2

2

1
x

A
AxxAx

x
A

x

A

xxxx







































 
 






y



y

A

yx

y
Axxy

x

y
Ayx

yx
A 







































 

2

211 1
))(1(

/

1
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




2

2

y


 































y

A

yyy


 =   111 )1(

1  
















 yAy

y
A

yy
A  

         = 
2

2

y

A
Ay   

Therefore, 























2

2

2

2

yx


 

2x

A
  + 

2y

A
  0 

i.e., the given stream function does not represent a possible irrotational flow 

field. 

 

 

(e)  22 xy   






x


x2  






2

2

x


 -2 






y


 2y 






2

2

y


 2 

Hence, 























2

2

2

2

yx


 -2 + 2 = 0  

Therefore, the given stream function represents a possible irrotational flow 

field. 

 

Determine the stream function for each of the following velocity potential 

functions: 

 

(a) yx       

(b) 22 yx   [Assignment] 

(c) 
22 yx

Ax


  

(d) yxsinsin  

(e)  yx log  [Assignment] 

 

Solution.  
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(a) yx   

 

From equation (34), 

 

y
v

x 







         

u
y





 = 














x
 = 

x


  

x


=   101 















x

y

x

x
yx

x
 = 

y


 

 y  

   y  

 )(xfy   

 
xy

y

y

x
yx

yy 






















 110  

 x  

   x  

 )(yfx   

 

Hence, xy   

 

(b) 22 yx   

 

y
v

x 







         

u
y





 = 














x
 = 

x


  

x


=      

02
22

22 













x

x

y

x

x
yx

x
 = 

y


 

 yx  .2  

    yx2  =   )(22 xfxyyx   

     
x

y
y

y

y

x
yx

yy 






















 20

22
22

 

 xy  .2  

    )(22 yfyxxy  

    yfxfxyxy  22  = 0 +    yfxf    
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The velocity potential function defined by (b) does not represent the flow 

field and hence there is no explicit stream function corresponding to this 

velocity potential.  

 

(c) 
22 yx

Ax


  

y
v

x 







         

u
y





 = 














x
 = 

x


  

x


= 


















22 yx

Ax

x

    

 222

22 2
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xAxAyx


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 
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Solution incomplete 


